Skip to main content
Log in

Critiquing the Concept of BCI Illiteracy

  • Original Paper
  • Published:
Science and Engineering Ethics Aims and scope Submit manuscript

Abstract

Brain–computer interfaces (BCIs) are a form of technology that read a user’s neural signals to perform a task, often with the aim of inferring user intention. They demonstrate potential in a wide range of clinical, commercial, and personal applications. But BCIs are not always simple to operate, and even with training some BCI users do not operate their systems as intended. Many researchers have described this phenomenon as “BCI illiteracy,” and a body of research has emerged aiming to characterize, predict, and solve this perceived problem. However, BCI illiteracy is an inadequate concept for explaining difficulty that users face in operating BCI systems. BCI illiteracy is a methodologically weak concept; furthermore, it relies on the flawed assumption that BCI users possess physiological or functional traits that prevent proficient performance during BCI use. Alternative concepts to BCI illiteracy may offer better outcomes for prospective users and may avoid the conceptual pitfalls that BCI illiteracy brings to the BCI research process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. At times this critique will reference similar normative phrasing; the use of these terms in this paper are meant relative to and entangled with existing norms in BCI research rather than as independent, self-sufficient categories.

  2. A more detailed discussion of the similarities or differences between BCI skill and literacy, and the accuracy of such terminology, is provided by Brendan Allison and Christa Neuper (2010).

  3. This paper uses the phrase BCI illiteracy, as it is by far the most popular of these terms, but the arguments presented will apply to any concept similar to BCI illiteracy regardless of the specific terminology used.

  4. Individual BCI researchers may not go through all of these steps—some just stop at labeling, some only propose to design BCIs for illiterate populations, etc.

References

  • Ahn, M., Cho, H., Ahn, S., & Jun, S. C. (2013). High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery. PLoS ONE, 8(11), e80886.

    Article  Google Scholar 

  • Ahn, M., & Jun, S. C. (2015). Performance variation in motor imagery brain–computer interface: A brief review. Journal of Neuroscience Methods, 243, 103–110.

    Article  Google Scholar 

  • Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., & Graser, A. (2010). BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(2), 107–116.

    Article  Google Scholar 

  • Allison, B. Z., & Neuper, C. (2010). Could anyone use a BCI? In D. S. Tan & A. Nijholt (Eds.), Brain–computer interfaces (pp. 35–54). London, UK: Springer.

    Google Scholar 

  • Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007). Brain–computer interface systems: progress and prospects. Expert Review of Medical Devices, 4(4), 463–474.

    Article  Google Scholar 

  • Banville, H., & Falk, T. H. (2016). Recent advances and open challenges in hybrid brain–computer interfacing: a technological review of non-invasive human research. Brain–Computer Interfaces, 3(1), 9–46.

    Google Scholar 

  • Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller, K. R., Curio, G., & Dickhaus, T. (2010). Neurophysiological predictor of SMR-based BCI performance. Neuroimage, 51(4), 1303–1309.

    Article  Google Scholar 

  • Carabalona, R. (2017). The role of the interplay between stimulus type and timing in explaining BCI-illiteracy for visual P300-based brain–computer interfaces. Frontiers in Neuroscience, 11, 363.

    Article  Google Scholar 

  • Chavarriaga, R., Fried-Oken, M., Kleih, S., Lotte, F., & Scherer, R. (2017). Heading for new shores! Overcoming pitfalls in BCI design. Brain–Computer Interfaces, 4(1–2), 60–73.

    Google Scholar 

  • Emma W. (2017). People: The strongest link. Resource document. National Cyber Security Centre. https://www.ncsc.gov.uk/information/people-strongest-link. Accessed 28 March 2017.

  • Friedrich, E. V. C., Neuper, C., & Scherer, R. (2013). Whatever works: A systematic user-centered training protocol to optimize brain–computer interfacing individually. PLoS ONE, 8(9), e76214.

    Article  Google Scholar 

  • Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., & Pfurtscheller, G. (2003). How many people are able to operate an EEG-based brain–computer interface (BCI)? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 145–147.

    Article  Google Scholar 

  • Hacking, I. (1995). The looping effects of human kinds. In D. Sperber, D. Premack, & A. J. Premack (Eds.), Symposia of the Fyssen Foundation. Causal Cognition: A Multidisciplinary Debate (pp. 351–394). New York, NY: Clarendon Press/Oxford University Press.

  • Jeunet, C., Cellard, A., Subramanian, S., Hachet, M., N’Kaoua, B., & Lotte, F. (2014). How well can we learn with standard BCI training approaches? A pilot study, Presented at 6th International BrainComputer Interface Conference, Graz, Austria, September 2014.

  • Kaufmann, T., Schulz, S. M., Köblitz, A., Renner, G., Wessig, C., & Kübler, A. (2013). Face stimuli effectively prevent brain–computer interface inefficiency in patients with neurodegenerative disease. Clinical Neurophysiology, 124(5), 893–900.

    Article  Google Scholar 

  • Kaufmann, T., Völker, S., Gunesch, L., & Kübler, A. (2012). Spelling is just a click away–a user-centered Brain–computer interface including auto-calibration and predictive text entry. Frontiers in Neuroscience, 6, 72.

    Article  Google Scholar 

  • Kübler, A., Holz, E. M., Riccio, A., Zickler, C., Kaufmann, T., Kleih, S. C., Staiger-Sälzer, P., Desideri, L., Hoogerwerf, E. J., & Mattia, D. (2014). The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS ONE, 9(12), e112392.

    Article  Google Scholar 

  • Kübler, A., Mattia, D., Rupp, R., & Tangermann, M. (2013). Facing the challenge: Bringing brain–computer interfaces to end-users. Artificial Intelligence in Medicine, 59(2), 55–60.

    Article  Google Scholar 

  • Kübler, A., & Müller, K. (2007). An introduction to brain–computer interfacing. In G. Dornhege, J. R. Millán, T. Hinterberger, D. J. McFarland, & K. Müller (Eds.), Toward brain–computer interfacing (pp. 1–25). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Lotte, F., Larrue, F., & Mühl, C. (2013). Flaws in current human training protocols for spontaneous Brain–computer interfaces: Lessons learned from instructional design. Frontiers in Human Neuroscience, 7, 568.

    Article  Google Scholar 

  • McCane, L. M., Sellers, E. W., McFarland, D. J., Mak, J. N., Carmack, C. S., Zeitlin, D., Wolpaw, J. R., & Vaughan, T. M. (2014). Brain–computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15(3–4), 207–215.

    Article  Google Scholar 

  • Myrden, A., & Chau, T. (2015). Effects of user mental state on EEG–BCI performance. Frontiers in Human Neuroscience, 9, 308.

    Article  Google Scholar 

  • Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea, A., Halder, S., Mochty, U., Krusienski, D. J., Vaughan, T. M., & Wolpaw, J. R. (2008). A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clinical Neurophysiology, 119(8), 1909–1916.

    Article  Google Scholar 

  • Pasqualotto, E., Federici, S., & Belardinelli, M. O. (2012). Toward functioning and usable brain–computer interfaces (BCIs): A literature review. Disability and Rehabilitation: Assistive Technology, 7(2), 89–103.

    Google Scholar 

  • Pasqualotto, E., Matuz, T., Federici, S., Ruf, C. A., Bartl, M., Olivetti Belardinelli, M., Birbaumer, N., & Halder, S. (2015). Usability and workload of access technology for people with severe motor impairment: A comparison of Brain–computer interfacing and eye tracking. Neurorehabilitation and Neural Repair, 29(10), 950–957.

    Article  Google Scholar 

  • Peters, B., Mooney, A., Oken, B., & Fried-Oken, M. (2016). Soliciting BCI user experience feedback from people with severe speech and physical impairments. Brain–Computer Interfaces, 3(1), 47–58.

    Google Scholar 

  • Pfurtscheller, G., Allison, B. Z., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., Zander, T. O., Mueller-Putz, G., Neuper, C., & Birbaumer, N. (2010). The hybrid BCI. Frontiers in Neuroscience, 4, 3.

    Google Scholar 

  • Riemer-Reiss, M. L., & Wacker, R. R. (2000). Factors associated with assistive technology discontinuance among individuals with disabilities. Journal of Rehabilitation, 66(3), 44–50.

    Google Scholar 

  • Schreuder, M., Riccio, A., Risetti, M., Dähne, S., Ramsay, A., Williamson, J., Mattia, D., & Tangermann, M. (2013). User-centered design in brain–computer interfaces—A case study. Artificial Intelligence in Medicine, 59(2), 71–80.

    Article  Google Scholar 

  • Sellers, E., Krusienski, D., McFarland, D., Vaughan, T., & Wolpaw, J. (2006). A P300 event-related potential brain–computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biological Psychology, 73, 242–252.

    Article  Google Scholar 

  • Sexton, C. A. (2015). The overlooked potential for social factors to improve effectiveness of brain–computer interfaces. Frontiers in Systems Neuroscience, 9(233), 693–695.

    Google Scholar 

  • Shu, X., Chen, S., Yao, L., Sheng, X., Zhang, D., Jiang, N., Jia, J., & Zhu, X. (2018). Fast recognition of BCI-inefficient users using physiological features from EEG Signals: A screening study of stroke patients. Frontiers in Neuroscience, 12, 93.

    Article  Google Scholar 

  • Silvers, A. (2009). An essay on modeling: The social model of disability. Philosophical reflections on disability (pp. 19–36). Netherlands: Springer.

    Chapter  Google Scholar 

  • Suk, H., Fazli, S., Mehnert, J., Müller, K., & Lee, S. (2014). Predicting BCI subject performance using probabilistic spatio-temporal filters. PLoS ONE, 9(2), e87056.

    Article  Google Scholar 

  • Thomas, E., Dyson, M., & Clerc, M. (2013). An analysis of performance evaluation for motor-imagery based BCI. Journal of Neural Engineering, 10, e031001.

    Article  Google Scholar 

  • Viduarre, C., & Blankertz, B. (2010). Towards a cure for BCI illiteracy. Brain Topography, 23(2), 194–198.

    Article  Google Scholar 

  • Whitbeck, Caroline. (1996). Ethics as design: Doing justice to moral problems. The Hastings Center Report, 26(3), 9–16.

    Article  Google Scholar 

  • Yao, L., Sheng, X., Zhang, D., Jiang, N., Farina, D., & Zhu, X. (2017). A BCI system based on somatosensory attentional orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(1), 81–90.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Neuroethics group at the Center for Sensorimotor Neural Engineering, especially Dr. Laura Specker Sullivan, Timothy Brown, Marion Boulicault and Dr. Sara Goering for their help in refining this critique from early to final drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret C. Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, M.C. Critiquing the Concept of BCI Illiteracy. Sci Eng Ethics 25, 1217–1233 (2019). https://doi.org/10.1007/s11948-018-0061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11948-018-0061-1

Keywords

Navigation