Skip to main content
Log in

Neuronal and Glial Morphology in Olfactory Systems: Significance for Information-Processing and Underlying Developmental Mechanisms

  • Published:
Brain and Mind

Abstract

The shapes of neurons and glial cells dictate many important aspects of their functions. In olfactory systems, certain architectural features are characteristics of these two cell types across a wide variety of species. The accumulated evidence suggests that these common features may play fundamental roles in olfactoryinformation processing. For instance, the primary olfactory neuropil in most vertebrate and invertebrate olfactory systems is organized into discrete modules called glomeruli. Inside each glomerulus, sensory axons and CNS neurons branch and synapse in patterns that are repeated across species. In many species, moreover, the glomeruli are enveloped by a thin and ordered layer of glial processes. Theglomerular arrangement reflects the processing of odor information in modules that encode the discrete molecular attributes of odorant stimuli being processed. Recent studies of the mechanisms that guide the development of olfactory neurons and glial cells have revealed complex reciprocal interactions between these two cell types, which may be necessary for the establishment of modular compartments. Collectively, the findings reviewed here suggest that specialized cellular architecture plays key functional roles in the detection, analysis, and discrimination of odors at early steps in olfactory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacci, A., Verderio, C., Pravettoni, E. and Metteoli, M., 1999: The role of glial cells in synaptic function, Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 403-409.

    PubMed  Google Scholar 

  • Bailey, M. S., Puche, A. C. and Shipley, M. T., 1999: Development of the olfactory bulb: Evidence for glia-neuron interactions in glomerular formation, J. Comp. Neurol. 415, 423-448.

    PubMed  Google Scholar 

  • Bailey, M. S. and Shipley, M. T., 1993: Astrocyte subtypes in the rat olfactory bulb: Morphological heterogeneity and differential laminar distribution, J. Comp. Neurol. 328, 501-526.

    PubMed  Google Scholar 

  • Bartolomei, J. C. and Greer, C. A., 2000: Olfactory ensheating cells: Bridging the gap in spinal cord injury, Neurosurgery 47, 1057-1069.

    PubMed  Google Scholar 

  • Baumann, P. M., Oland, L. A. and Tolbert, L. P., 1996: Glial cells stabilize axonal protoglomeruli in the developing olfactory lobe of the moth Manduca Sexta, J. Comp. Neurol. 373, 118-128.

    PubMed  Google Scholar 

  • Bhalla, U. S. and Bower, J. M., 1997: Multiday recordings from olfactory bulb neurons in awake freely moving rats: Spatially and temporally organized variability in odorant response properties, J. Comput. Neurosci. 4, 221-256.

    PubMed  Google Scholar 

  • Boeckh, J., Distler, P., Ernst, K. D., Hösl, M. and Malun, D., 1990: Olfactory bulb and antennal lobe, in D. Schild (ed.), Chemosensory Information Processing, Springer-Verlag, Berlin, pp. 201-227.

    Google Scholar 

  • Boeckh, J. and Tolbert, L. P., 1993: Synaptic organization and development of the antennal lobe in insects, Microsc. Res. Techn. 24, 260-280.

    Google Scholar 

  • Bozza, T. C. and Kauer, J. S., 1998: Odorant response properties of convergent olfactory receptor neurons, J. Neurosci. 18, 4560-4569.

    PubMed  Google Scholar 

  • Buck, L. and Axel, R, 1991: A novel multigene family may encode odorant receptors: A molecular basis for odorant recognition, Cell 65, 175-187.

    PubMed  Google Scholar 

  • Burd, G. D. and Tolbert, L. P., 2000: Development of the olfactory system, in T. E. Finger, W. L. Silver, and D. Restrepo (eds.), The Neurobiology of Taste and Smell, 2nd ed., Wiley, New York, pp. 233-255.

    Google Scholar 

  • Chiu, K. and Greer, C. A., 1996: Immunocytochemical analyses of astrocyte development in the olfactory bulb, Dev. Brain Res. 95, 28-37.

    Google Scholar 

  • Christensen, T. A., D'Alessandro, G., Lega, J. and Hildebrand, J. G., 2001: Morphometric modeling of olfactory circuits in the insect antennal lobe: I. Simulations of spiking local interneurons, Biosystems 61, 143-53.

    PubMed  Google Scholar 

  • Christensen, T. A. and Hildebrand, J. G., 1987: Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca Sexta, J. Comp. Physiol. A 160, 553-569.

    PubMed  Google Scholar 

  • Christensen, T. A. and Hildebrand, J. G., 2002: Pheromonal and host-odor processing in the insect antennal lobe: How different? Curr. Opin. Neurobiol. 12, 393-399.

    PubMed  Google Scholar 

  • Christensen, T. A., Pawlowski, V. M., Lei, H. and Hildebrand, J. G., 2000: Multi-unit recordings reveal contextdependent modulation of synchrony in odor-specific neural ensembles, Nat. Neurosci. 3, 927-931.

    PubMed  Google Scholar 

  • Christensen, T. C., Waldrop, B. R., Harrow, I. D. and Hildebrand, J. G., 1993: Local interneurons and information processing in the olfactory glomeruli of the moth Manduca Sexta, J. Comp. Physiol. A 173, 385-399.

    PubMed  Google Scholar 

  • Christensen, T. A., Waldrop, B. R. and Hildebrand, J. G., 1998: Multitasking in the olfactory system: Contextdependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons, J. Neurosci. 18, 5999-6008.

    PubMed  Google Scholar 

  • Christensen, T. A. and White, J., 2000: Representation of olfactory information in the brain, in T. E. Finger, W. L. Silver, and D. Restrepo (eds.), The Neurobiology of Taste and Smell, 2nd edn. Wiley, New York, pp. 201-232.

    Google Scholar 

  • Demir, R., Haberly, L. B. and Jackson, M. B., 1998: Voltage imaging of epileptiform activity in slices from rat piriform cortex: Onset and propagation, J. Neurophysiol. 80, 2727-2742.

    PubMed  Google Scholar 

  • Dietzel, I. Heinemann, U. Y. and Lux, H. D., 1989: Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in the cat brain, Glia 2, 25-44.

    PubMed  Google Scholar 

  • Distler, P. and Boeckh, J., 1997a: Synaptic connection between identified neuron types in the antennal lobe glomeruli of the cockroach, Periplaneta americana. I. Uniglomerular projection neurons, J. Comp. Neurol. 378, 307-319.

    PubMed  Google Scholar 

  • Distler, P. and Boeckh, J., 1997b: Synaptic connection between identified neuron types in the antennal lobe glomeruli of the cockroach, Periplaneta americana. II. Local multiglomerular interneurons, J. Comp. Neurol. 383, 529-540.

    PubMed  Google Scholar 

  • Doucette, R., 1989: Development of the nerve fiber layer in the olfactory bulb of mouse embryos, J. Comp. Neurol. 285, 514-527.

    PubMed  Google Scholar 

  • Doucette, R., 1993: Glial cells in the nerve fiber layer of the main olfactory ulb of embryonic and adult mammals, Microsc. Res. Tech. 24, 113-130.

    PubMed  Google Scholar 

  • Dryer, L. and Graziadei, P. P. C., 1994: Mitral cell dendrites: A comparative approach, Anat. Embryol. (Berl.) 189, 91-106.

    Google Scholar 

  • Edwards, J. S. and Tolbert, L. P., 1998: Chapter 19: Insect neuroglia, in M. Locke (ed). Microscopic Anatomy of the Invertebrates, Vol. 11B: Insecta, Wiley-Liss, New York, pp. 449-466.

    Google Scholar 

  • Farbman, A. and Squinto, L. M., 1985: Early development of olfactory receptor cell axons, Dev. Brain Res. 19, 205-213.

    Google Scholar 

  • Frankenhaeuser, B. and Hodgkin, A. L., 1956: The after effects of impulses in the giant nerve fibres of Loligo, J. Physiol. (Lond.) 131, 346-376.

    Google Scholar 

  • Galizia, C. G. and Menzel, R., 2001: The role of glomeruli in the neural representation of odours: Results from optical recording studies, J. Insect Physiol. 47, 115-130.

    PubMed  Google Scholar 

  • Gao, Q., Yuan, B. and Chess, A., 2000: Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe, Nat. Neurosci. 3, 780-785.

    PubMed  Google Scholar 

  • Gascuel, J. and Masson, C., 1991: Developmental study of afferented and unafferented bee antennal lobe, J. Neurobiol. 22, 795-810.

    PubMed  Google Scholar 

  • Gelperin, A., 1999: Oscillatory dynamics and information processing in olfactory systems, J. Exp. Biol. 202, 1855-1864.

    PubMed  Google Scholar 

  • Getchell, T. V. and Shepherd, G. M., 1975: Short-axon cells in the olfactory bulb: Dendrodendritic synaptic interactions, J. Physiol. 251, 523-48.

    PubMed  Google Scholar 

  • Gibson, N. J. and Nighorn, A., 2000: Expression of nitric oxide synthase and soluble guanylyl cyclase in the developing olfactory system of Manduca Sexta, J. Comp. Neurol. 422, 191-205.

    PubMed  Google Scholar 

  • Gibson, N. J., Rossler, W., Nighorn, A.J., Oland, L. A., Hildebrand, J. G. and Tolbert, L. P., 2001: Neuron-glia communication via nitric oxide is essential in establishing antennal-lobe structure in Manduca sexta, Dev. Biol. 240, 26-39.

    Google Scholar 

  • Gonzalez, M. de L. and Silver, J., 1994: Axon-glia interactions regulate ECM patterning in the postnatal rat olfactory bulb, J. Neurosci. 14, 6121-6131.

    PubMed  Google Scholar 

  • Goodman, C. S., 1996: Mechanisms and molecules that control growth cone guidance, Annu. Rev. Neurosci. 19, 341-377.

    PubMed  Google Scholar 

  • Goriely, A. R., Secomb, T. W. and Tolbert, L. P., 2002: Effect of the glial envelope on extracellular KC diffusion in olfactory glomeruli, J. Neurophysiol. 87, 1712-1722.

    PubMed  Google Scholar 

  • Graziadei, P. P. C. and Monti Graziadei, G. A., 1986: Principles of organization of the vertebrate olfactory glomerulus: An hypothesis, Neuroscience 19, 1025-1035.

    PubMed  Google Scholar 

  • Graziadei, P. P. C. and Samanen, D.W., 1980: Ectopic glomerular structures in the olfactory bulb of neonatal and adult mice, Brain Res. 187, 467-472.

    PubMed  Google Scholar 

  • Haberly, L. B., 2001: Parallel-distributed processing in olfactory cortex: New insights from morphological and physiological analysis of neuronal circuitry, Chem. Senses 26, 551-576.

    PubMed  Google Scholar 

  • Hansson, B., Christensen, T. A. and Hildebrand, J. G., 1991: Functionally distinct subdivisions of the macroglomerular complex in the antennal lobes of the male sphinx moth Manduca sexta, J. Comp. Neurol. 312, 264-278.

    PubMed  Google Scholar 

  • Häusser, M., Spruston, N. and Stuart, G. J., 2000: Diversity and dynamics of dendritic signaling, Science 290, 739-744.

    PubMed  Google Scholar 

  • Heinbockel, T., Kloppenburg, P. and Hildebrand, J. G., 1998: Pheromone-evoked potentials and oscillations in the antennal lobes of the sphinx moth Manduca Sexta, J. Comp. Physiol. A 182, 703-714.

    PubMed  Google Scholar 

  • Hildebrand, J. G., 2001: From molecule to perception: five hundred million years of olfaction, Biol. Int. 41, 41-52.

    Google Scholar 

  • Hildebrand, J. G., Hall, L. M. and Osmond, B. C., 1979: Distribution of binding sites for 125I-labeled alphabungarotoxin in normal and deafferented antennal lobes of Manduca sexta, Proc. Natl. Acad. Sci. U.S.A. 76, 499-503.

    PubMed  Google Scholar 

  • Hildebrand, J. G. and Shepherd, G. M., 1997: Mechanisms of olfactory discrimination: Converging evidence for common principles across phyla, Annu. Rev. Neurosci. 20, 595-631.

    PubMed  Google Scholar 

  • Hines, M. L. and Carnevale N. T., 1997: The NEURON simulation environment, Neural. Comput. 9, 1179-1209.

    PubMed  Google Scholar 

  • Homberg, U., Montague, R. and Hildebrand, J. G., 1988: Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta, Cell Tissue Res. 254, 255-281.

    PubMed  Google Scholar 

  • Jackowski, A., Parnavalas, J. G. and Lieberman, A. R., 1978: The reciprocal synapse in the external plexiform layer of the mammalian olfactory bulb, Brain Res. 159, 17-28.

    PubMed  Google Scholar 

  • Jahr, C. E. and Nicoll R. A., 1981: Primary afferent depolarization in the in vivo grog olfactory bulb, J. Physiol. (Lond.) 318, 375-384.

    Google Scholar 

  • Jefferis, G. S., Marin, E. C., Stocker, R. F. and Luo, L., 2001: Target neuron prespecification in the olfactory map of Drosophila, Nature 414, 204-208.

    PubMed  Google Scholar 

  • Jendelova, P. and Sykova, E., 1991: Role of glia in KC and pH homeostasis in the neonatal rat spinal cord, Glia 4, 56-63.

    PubMed  Google Scholar 

  • Joester, A. and Faissner, A., 2001: The structure and function of tenascins in the nervous system, Matrix Biol. 20, 13-22.

    PubMed  Google Scholar 

  • Johnson, D. M. G., Illig, K. R., Behan, M. and Haberly, L. B., 2000: New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems, J. Neurosci. 20, 6974-6982.

    PubMed  Google Scholar 

  • Kettenmann, H. and Ransom, R. (eds.), 1995: Neuroglia, Oxford University Press, New York.

    Google Scholar 

  • Khayari, A., Math, F. and Davrainville, J.-L., 1988a: Evidence for an absence of KC spread in the glomerular layer of the rat olfactory bulb, Neurosci. Lett. 93, 56-60.

    PubMed  Google Scholar 

  • Khayari, A., Math, F. and Davrainville, J.-L., 1988b: Electrical stimulation of primary olfactory nerve induces two types of variations in the extracellular potassium activity within the glomerulus of the rat olfactory bulb in vivo, Brain Res. 457, 188-191.

    PubMed  Google Scholar 

  • Korn, H., Triller, A. and Faber, D. S., 1978: Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cells, Proc. R. Soc. Lond. B Biol. Sci. 202, 533-539.

    PubMed  Google Scholar 

  • Krull, C. E., Morton, D. B., Faissner, A., Schachner, M. and Tolbert, L. P., 1994a: Spatiotemporal pattern of expression of tenascin-like molecules in a developing insect olfactory system, J. Neurobiol. 25, 515-534.

    PubMed  Google Scholar 

  • Krull, C. E., Oland, L. A., Faissner, A., Schachner, M. and Tolbert, L. P., 1994b: In vitro analyses indicate a potential role for tenascin-like molecules in the development of insect olfactory glomeruli, J. Neurobiol. 25, 989-1004.

    PubMed  Google Scholar 

  • Laurent, G., 1999: A systems perspective on early olfactory coding, Science 286, 723-728.

    PubMed  Google Scholar 

  • Laurent, G., Stopfer, M., Friedrich, R. W., Rabinovich, M. I., Volkovskii, A. and Abarbanel, H. D., 2001: Odor encoding as an active, dynamical process: Experiments, computation, and theory, Annu. Rev. Neurosci. 24, 263-97.

    PubMed  Google Scholar 

  • Lei, H., Christensen, T. A. and Hildebrand, J. G., 2002: Local inhibition modulates odor-evoked synchronization of glomerulus-specific out put neurons, Nat. Neurosci. 5, 557-565.

    PubMed  Google Scholar 

  • Lemke, G., 2001: Glial control of neuronal development, Annu. Rev. Neurosci. 24, 87-105.

    PubMed  Google Scholar 

  • Magee, J. C., 2000: Dendritic integration of excitatory synaptic input, Nat. Rev. Neurosci. 1, 181-190.

    PubMed  Google Scholar 

  • Malun, D., 1991: Inventory and distribution of synapses of identified uniglomerular projection neurons in the antennal lobe of Periplaneta americana, J. Comp. Neurol. 305, 348-360.

    PubMed  Google Scholar 

  • Malun, D. and Brunjes, P., 1996: Development of olfactory glomeruli: Temporal and spatial interactions between olfactory receptor axons and mictral cells in opossums and rats, J. Comp. Neurol. 368, 1-16.

    PubMed  Google Scholar 

  • Malun, D., Oland, L. A. and Tolbert, L. P., 1994: Uniglomerular projection neurons participate in early development of olfactory glomeruli in the moth Manduca sexta, J. Comp. Neurol. 347, 1-22.

    PubMed  Google Scholar 

  • Marin, E. C., Jefferis, G. S. X. E., Komiyama, T., Zhu, H. and Luo, L., 2002: Representation of the glomerular olfactory map in the Drosophila brain, Cell 109, 243-255.

    PubMed  Google Scholar 

  • Marin-Padilla, M. and Amieva, M. R., 1989: Early neurogenesis of the mouse olfactory nerve: Golgi and electron microscopic studies, J. Comp. Neurol. 288, 339-352.

    PubMed  Google Scholar 

  • Matsumoto, S. G. and Hildebrand, J. G., 1981: Olfactory mechanisms in the moth Manduca sexta: Response characteristics and morphology of central neurons in the antennal lobes, Proc. R. Soc. Lond. B 213, 249-277.

    Google Scholar 

  • McCormick, D. A. and Contreras, D., 2001: On the cellular and network bases of epileptic seizures, Annu. Rev. Physiol. 63, 815-846.

    PubMed  Google Scholar 

  • Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R., 1996: Visualizing an olfactory sensory map, Cell 87, 675-686.

    PubMed  Google Scholar 

  • Mori, K., Nagao, H. and Yoshihara, Y., 1999: The olfactory bulb: Coding and processing of odor molecule information, Science 286, 711-715.

    PubMed  Google Scholar 

  • Morrison, E. E. and Graziadei, P. P. C., 1996: An ultrastructural study of glomeruli associated with vomeronasal organs transplanted into the rat CNS, Anat. Embryol. (Berl.) 193, 331-339.

    Google Scholar 

  • Nicholson, C., 1995: Extracellular space as the pathway for neuron-glial cell interaction, in H. Kettenmann and B. R. Ransom (eds.), Neuroglia, Oxford Press, Oxford, pp. 387-397.

    Google Scholar 

  • Ojima, H., Mori, K. and Kishi, K., 1984: The trajectory of mitral cell axons in the rabbit olfactory cortex revealed by intracellular HRP injection, J. Comp. Neurol. 230, 77-87.

    PubMed  Google Scholar 

  • Oland, L. A. and Hayashi, J., 1993: Effects of the steroid hormone 20-hydroxyecdysone and prior sensory input on the survival and growth of moth central olfactory neurons in vitro, J. Neurobiol. 24, 1170-1186.

    PubMed  Google Scholar 

  • Oland, L. A., Marrero, H. G. and Burger, I., 1999: Glial cells in the developing and adult olfactory lobe of the moth Manduca sexta, Cell Tissue Res. 297, 527-545.

    PubMed  Google Scholar 

  • Oland, L. A., Müller, T., Kettenmann, H. and Hayashi, J., 1996: Preparation of primary cultures and acute slices of the nervous system of the moth Manduca sexta, J. Neurosci. Meth. 69, 103-112.

    Google Scholar 

  • Oland, L. A., Orr, G. and Tolbert, L. P., 1990: Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain, J. Neurosci. 10, 2096-2112.

    PubMed  Google Scholar 

  • Oland, L. A. and Tolbert, L. P., 1987: Glial patterns during early development of antennal lobes of Manduca sexta: A comparison between normal lobes and lobes deprived of antennal axons, J. Comp. Neurol. 255, 196-207.

    PubMed  Google Scholar 

  • Oland, L. A. and Tolbert, L. P., 1988: The effects of hydroxyurea parallel the effects of radiation in developing olfactory glomeruli, J. Comp. Neurol. 27, 377-387.

    Google Scholar 

  • Oland, L. A. and Tolbert, L. P., 1996: Multiple factors shape development of olfactory glomeruli: Insights from an insect model system, J. Neurobiol. 30, 92-109.

    PubMed  Google Scholar 

  • Oland, L. A. and Tolbert, L. P., 1998: Glomerulus development in the absence of a set of mitral-like neurons in the insect olfactory lobe, J. Neurobiol. 36, 41-52.

    PubMed  Google Scholar 

  • Oland, L. A. and Tolbert, L. P., 2002: Interactions between neuropil-associated glial cells and the dendrites of antennal-lobe neurons in the developing olfactory lobe of the moth Manduca sexta, glia, supplement 1, 2002, p. S16.

  • Oland, L. A., Tolbert, L. P., Mossman, K. L., 1988: Radiation-induced reduction of the glial population during development disrupts the formation of olfactory glomeruli in an insect, J. Neurosci. 8, 353-367.

    PubMed  Google Scholar 

  • Pinching, A. J. and Powell, T. P. S., 1971: The neuropil of the glomeruli of the olfactory bulb, J. Cell Sci. 9, 347-377.

    PubMed  Google Scholar 

  • Puche, A. and Shipley, M., 2001: Radial glia development in the mouse olfactory bulb, J. Comp. Neurol. 434, 1-12.

    PubMed  Google Scholar 

  • Raisman, G., 1985: Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons, Neuroscience 14, 237-254.

    PubMed  Google Scholar 

  • Raisman, G., 2001: Olfactory ensheathing cells-Another miracle cure for spinal cord injury? Nat. Rev. Neurosci. 2, 369-375.

    PubMed  Google Scholar 

  • Rall, W. and Shepherd, G. M., 1968: Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb, J. Neurophysiol. 31, 884-915.

    PubMed  Google Scholar 

  • Rall, W., Shepherd, G. M., Reese, T. S. and Brightman, M. W., 1966: Dendrodendritic synaptic pathway for inhibition in the olfactory bulb, Exp. Neurol. 14, 44-56.

    PubMed  Google Scholar 

  • Ramon y Cajal, S., 1911: Olfactory apparatus: Olfactory mucosa and olfactory bulb or first-order olfactory center, in (English translation by N. Swanson and L.W. Swanson, 1995) Histology of the Nervous System of Man and Vertebrates, Vol. II, Oxford University Press, New York, pp. 533-554.

    Google Scholar 

  • Ressler, K. J., Sullivan, S. L. and Buck, L. B., 1994: Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb, Cell 79, 1245-1255.

    PubMed  Google Scholar 

  • Rössler,W., Randolph, P.W., Tolbert, L. P. and Hildebrand, J. G., 1999: Axons of olfactory receptor cells of transsexually grafted antennae induce development of sexually dimorphic glomeruli in Manduca sexta, J. Neurobiol. 38, 521-541.

    PubMed  Google Scholar 

  • Rössler, W., Tolbert, L. P. and Hildebrand, J. G., 1998: Early formation of sexually dimorphic glomeruli in the developing olfactory lobe of the brain of the moth Manduca sexta, J. Comp. Neurol. 396, 415-428.

    PubMed  Google Scholar 

  • Salecker, I. and Boeckh, J., 1996: Influence of receptor axons on the formation of olfactory glomeruli in a hemimetabolous insect, the cockroach Periplaneta Americana, J. Comp. Neurol. 370, 262-272.

    PubMed  Google Scholar 

  • Schild, D., 1988: Principles of odor coding and a neural network for odor discrimination, Biophys. J. 54, 1011.

    PubMed  Google Scholar 

  • Schild, D. and Reidel, H., 1992: Significance of glomerular compartmentalization for olfactory coding, Biophys. J. 61, 704-715.

    PubMed  Google Scholar 

  • Schneiderman, A. M., Hildebrand, J. G., Brennan, M. M., Tumlinson, J. H., 1986: Trans-sexually grafted antennae alter pheromone-directed behaviour in a moth, Nature 323, 801-803.

    PubMed  Google Scholar 

  • Schneiderman, A. M., Matsumoto, S. G. and Hildebrand, J. G., 1982: Trans-sexually grafted antennae influence development of sexually dimorphic neurones in moth brain, Nature 298, 844-846.

    Google Scholar 

  • Scott, J. W., 1981: Electrophysiological identification of mitral and tufted cells and distributions of their axons in olfactory system of the rat, J. Neurophysiol. 46, 918-931.

    PubMed  Google Scholar 

  • Segev, I. & Rall, W., 1998: Excitable dendrites and spines: Earlier theoretical insights elucidate recent direct observations, Trends Neurosci. 21, 453-460.

    PubMed  Google Scholar 

  • Shepherd, G. M., 1972: Synaptic organization of the mammalian olfactory bulb, Physiol. Rev. 52, 864-917.

    PubMed  Google Scholar 

  • Shepherd, G. M. and Brayton, R. K., 1979: Computer simulation of a dendrodendritic synaptic circuit for self-and lateral-inhibition in the olfactory bulb, Brain Res. 175, 377-382.

    PubMed  Google Scholar 

  • Shipley, M. T. and Ennis, M., 1996: Functional organization of olfactory system, J. Neurobiol. 30, 123-176.

    PubMed  Google Scholar 

  • Steindler, D. A., Cooper, N.G. F., Faissner,A. and Schachner, M., 1989: Boundaries devined by adhesion molecules during development of the cerebral cortex: The J1/tenascin glycoprotein in the mouse somatosensory cortical barrel field, Dev. Biol. 131, 243-260.

    PubMed  Google Scholar 

  • Stopfer, M., Bhagavan, S., Smith, B. H. and Laurent G., 1997: Impaired odour discrimination on desynchronization of odour-encoding neural assemblies, Nature 390, 70-74.

    PubMed  Google Scholar 

  • Strotmann, J., Wanner, I., Helfrich, T., Beck, A. and Breer, H., 1994: Rostro-caudal patterning of receptorexpressing olfactory neurones in the rat nasal cavity, Cell Tissue Res. 278, 11-20.

    PubMed  Google Scholar 

  • Sun, X. J., Tolbert, L. P. and Hildebrand, J. G., 1997: Synaptic organization of the uniglomerular projection neurons of the antennal lobe of the moth Manduca sexta: A laser scanning confocal and electron microscopic study, J. Comp. Neurol. 379, 2-20.

    PubMed  Google Scholar 

  • Tolbert, L. P. and Hildebrand, J. G., 1981: Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the moth Manduca sexta: A study using thin sections and freeze-fracture, Proc. R. Soc. Lond. B 213, 279-301.

    Google Scholar 

  • Tolbert, L. P. and Oland, L. A., 1990: Glial cells form boundaries for developing insect olfactory glomeruli: A review, Exp. Neurol. 109, 19-28.

    PubMed  Google Scholar 

  • Tolbert, L. P. and Sirianni, P., 1990: The requirement for olfactory axons in the induction and stabilization of olfactory glomeruli in an insect, J. Comp. Neurol. 298, 69-82.

    PubMed  Google Scholar 

  • Treloar, H. B., Purcell, A. L. and Greer, C. A., 1999: Glomerular formation in the developing rat olfactory bulb, J. Comp. Neurol. 413, 289-304.

    PubMed  Google Scholar 

  • Valverde, F. 1999: Building an olfactory glomerulus, J. Comp. Neurol. 415, 419-422.

    PubMed  Google Scholar 

  • Valverde, F. and Lopez-Mascaraque, L., 1991: Neuroglial arrangements in the olfactory glomeruli of the hedgehog, J. Comp. Neurol. 307, 658-674.

    PubMed  Google Scholar 

  • Valverde, F., Santacana, M. and Heredia M., 1992: Formation of an olfactory glomerulus: Morphological aspects of development and organization, Neuroscience 49, 255-275.

    PubMed  Google Scholar 

  • Vassar, R., Chao, S. K., Sitcheran R., Nunez, J. M., Vosshall, L. B. and Axel, R., 1994: Topographic organization of sensory projections to the olfactory bulb, Cell 79, 981-991.

    PubMed  Google Scholar 

  • Vermeulen, A. and Rospars, J. P., 1998: Dendritic integration in olfactory sensory neurons; a steady-state analysis of how the neuron structure and neuron environment influence the coding of odor intensity, J. Comput. Neurosci. 5, 243-266.

    PubMed  Google Scholar 

  • Vermeulen, A., Rospars, J. P., Lansky, P. and Tuckwell, H. C., 1996: Coding of stimulus intensity in an olfactory receptor neuron: Role of neuron spatial extent and passive dendritic backpropagation of action potentials, Bull. Math. Biol. 58, 493-512.

    PubMed  Google Scholar 

  • Vickers, N. J., Christensen, T. A., Baker, T. C. and Hildebrand, J. G., 2001: Odour-plume dynamics influence the brain's olfactory code, Nature 410, 466-470.

    PubMed  Google Scholar 

  • Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. and Axel, R., 1999: A spatial map of olfactory receptor expression in the Drosophila antenna, Cell 96, 725-736.

    PubMed  Google Scholar 

  • Vosshall, L. B., Wong, A. M. and Axel, R., 2000: An olfactory sensory map in the fly brain, Cell 102, 147-159.

    PubMed  Google Scholar 

  • Wehr,M. and Laurent, G., 1996: Odour encoding by temporal sequences of firing in oscillating neural assemblies, Nature 384, 162-166.

    PubMed  Google Scholar 

  • Willey, T. J., 1973: The ultrastructure of the cat olfactory bulb, J. Comp. Neurol. 152, 211-232.

    PubMed  Google Scholar 

  • Wong, A. M., Wang, J. W. and Axel, R., 2002: Spatial representation of the glomerular map in the Drosophila protocerebrum, Cell 109, 229-241.

    PubMed  Google Scholar 

  • Woolf, T. B., Shepherd, G. M. and Greer, C. A., 1991: Local information processing in dendritic trees: Subsets of spines in granule cells of the mammalian olfactory bulb, J. Neurosci. 11, 1837-1854.

    PubMed  Google Scholar 

  • Zhao, H., Ivic, L., Otaki, J. M., Hashimoto, M., Mikoshiba, K. and Firestein, S., 1998: Functional expression of a mammalian odorant receptor, Science 279, 237-242.

    PubMed  Google Scholar 

  • Zochowski, M. R., Cohen, L. B., Falk, C. X. and Wachowiak, M., 2002: Voltage-sensitive and calcium-sensitive dye imaging of activity: examples from the olfactory bulb, in R. D. Frostig (ed.), In Vivo Optical Imaging of Brain Function, CRC Press, Boca Raton, FL, pp. 1-19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolbert, L.P., Oland, L.A., Christensen, T.C. et al. Neuronal and Glial Morphology in Olfactory Systems: Significance for Information-Processing and Underlying Developmental Mechanisms. Brain and Mind 4, 27–49 (2003). https://doi.org/10.1023/A:1024108115059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024108115059

Navigation