Skip to main content
Log in

The Hyperbolic Geometric Structure of the Density Matrix for Mixed State Qubits

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Density matrices for mixed state qubits, parametrized by the Bloch vector in the open unit ball of the Euclidean 3-space, are well known in quantum computation theory. We bring the seemingly structureless set of all these density matrices under the umbrella of gyrovector spaces, where the Bloch vector is treated as a hyperbolic vector, called a gyrovector. As such, this article catalizes and supports interdisciplinary research spreading from mathematical physics to algebra and geometry. Gyrovector spaces are mathematical objects that form the setting for the hyperbolic geometry of Bolyai and Lobachevski just as vector spaces form the setting for Euclidean geometry. It is thus interesting, in geometric quantum computation, to realize that the set of all qubit density matrices has rich structure with strong link to hyperbolic geometry. Concrete examples for the use of the gyro-structure to derive old and new, interesting identities for qubit density matrices are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  2. A. A. Ungar, Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces (Kluwer Academic, Dordrecht, 2001).

    Google Scholar 

  3. A. Peres, P. F. Scudo, and D. R. Terno, “Quantum entropy and special relativity,” Phys. Rev. Lett. 88, 230402 (2002).

    Google Scholar 

  4. A. A. Ungar, “Thomas rotation and the parametrization of the Lorentz transformation group,” Found. Phys. Lett. 1, 57–89 (1988).

    Google Scholar 

  5. R. U. Sexl and H. K. Urbantke, Relativity, Groups, Particles (Springer, New York, 2001). (Special relativity and relativistic symmetry in field and particle physics, Revised and translated from the third German (1992) edition by Urbantke.)

    Google Scholar 

  6. A. A. Ungar, “On the appeal to a pre-established harmony between pure mathematics and relativity physics,” Found. Phys. 33, 2003.

  7. L. Pyenson, “Relativity in late Wilhelmian Germany: The appeal to a preestablished harmony between mathematics and physics,” Arch. Hist. Exact Sci. 27(2), 137–155 (1982).

    Google Scholar 

  8. A. A. Ungar, “The expanding Minkowski space,” Resultate Math. 17(3/4), 342–354 (1990).

    Google Scholar 

  9. H. Urbantke, “Comment on: ‘The expanding Minkowski space’, [Resultate Math. 17(3/4), 342–354 (1990), MR 92d:83005] by A. A. Ungar,” Results Math. 19(1/2), 189-191 (1991).

    Google Scholar 

  10. J.-L. Chen and A. A. Ungar, “Introducing the Einstein metric to quantum computation and quantum information geometry,” Found. Phys. Lett. 15(2), 189–197 (2002).

    Google Scholar 

  11. J.-L. Chen and A. A. Ungar, “The Bloch gyrovector,” Found. Phys. 32(4), 531–565 (2002).

    Google Scholar 

  12. J.-L. Chen, L. Fu, A. A. Ungar, and X.-G. Zhao, “Geometric observation of Bures fidelity between two states of a qubit,” Phys. Rev. A (3) 65(2), 024303, 3 (2002).

    Google Scholar 

  13. A. Einstein, “Zur Elektrodynamik Bewegter Körper [On the electrodynamics of moving bodies],” Ann. Phys. (Leipzig) 17, 891–921 (1905).

    Google Scholar 

  14. H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity (Dover, New York, 1952). With notes by A. Sommerfeld, translated by W. Perrett and G. B. Jeffery; a collection of original memoirs on the special and general theory of relativity.

    Google Scholar 

  15. A. Einstein, Einstein's Miraculous Years: Five Papers that Changed the Face of Physics (Princeton University Press, Princeton, 1998). Edited and introduced by John Stachel. [Includes bibliographical references, Einstein's dissertation on the determination of molecular dimensions, Einstein on Brownian motion, Einstein on the theory of relativity, Einstein's early work on the quantum hypothesis, and a new English translation of Einstein's 1905.]

    Google Scholar 

  16. A. Einstein, The Collected Papers of A. Einstein. Vol. 2. The Swiss Years: Writings, 1900-1909, Edited by John Stachel, translations from the German by Anna Beck (Princeton University Press, Princeton, 1989).

    Google Scholar 

  17. V. Varičak, “Beiträge zur nichteuklidischen geometrie [contributions to non-Euclidean geometry].” Jber. Dtsch. Mat. Ver. 17, 70–83 (1908).

    Google Scholar 

  18. V. Varičak, “Anwendung der Lobatschefskjschen Geometrie in der Relativtheorie,” Phys. Z. 11, 93–96 (1910).

    Google Scholar 

  19. V. Varičak, Ñber die Nichteuklidische interpretation der Rela-tivit¨ atstheorie [On the non-Euclidean interpretation of relativity theory]," Jber. Dtsch. Mat. Ver. 21, 103–127 (1912).

    Google Scholar 

  20. B. A. Rosenfeld, A History of Non-Euclidean Geometry (Springer, New York, 1988). Evolution of the concept of a geometric space, translated from the Russian by Abe Shenitzer.

    Google Scholar 

  21. W. Pauli, Theory of Relativity (Pergamon Press, New York, 1958). Translated from the German by G. Field, with supplementary notes by the author.

    Google Scholar 

  22. S. Walter, “The non-Euclidean style of Minkowskian relativity,” in The Symbolic Universe, Jeremy J. Gray, ed. (Oxford University Press, Oxford, 1999), pp. 91–127.

    Google Scholar 

  23. V. Varičak, Darstellung der Relativitätstheorie im dreidimensionalen Lobatchefskijschen Raume [Presentation of the Theory of Relativity in Three-Dimensional Lobachevskian Space] (Zaklada, Zagreb, 1924).

  24. L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory (McGraw-Hill, New York, 1973).

    Google Scholar 

  25. S. G. Krantz, Complex Analysis: The Geometric Viewpoint (Mathematical Association of America, Washington, D.C., 1990).

    Google Scholar 

  26. T. Foguel and A. A. Ungar, “Involutory decomposition of groups into twisted subgroups and subgroups,” J. Group Theory 3(1), 27–46 (2000).

    Google Scholar 

  27. T. Foguel and A. A. Ungar, “Gyrogroups and the decomposition of groups into twisted subgroups and subgroups,” Pac. J. Math. 197(1), 1–11 (2001).

    Google Scholar 

  28. M. K. Kinyon and A. A. Ungar, “The gyro-structure of the complex unit disk,” Math. Mag. 73(4), 273–284 (2000).

    Google Scholar 

  29. L. Sbitneva, “Nonassociative geometry of special relativity,” Internat. J. Theoret. Phys. 40(1), 359–362 (2001).

    Google Scholar 

  30. L. V. Sabinin, Ludmila L. Sabinina, and Larissa V. Sbitneva, “On the notion of gyrogroup,” Aequationes Math. 56(1/2), 11–17 (1998).

    Google Scholar 

  31. L. V. Sabinin, Smooth Quasigroups and Loops (Kluwer Academic, Dordrecht, 1999).

    Google Scholar 

  32. A. A. Ungar, “Extension of the unit disk gyrogroup into the unit ball of any real inner product space,” J. Math. Anal. Appl. 202(3), 1040–1057 (1996).

    Google Scholar 

  33. G. S. Birman and A. A. Ungar, “The hyperbolic derivative in the Poincaré ball model of hyperbolic geometry,” J. Math. Anal. Appl. 254, 321–333 (2001).

    Google Scholar 

  34. A. A. Ungar, “The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry,” Amer. Math. Monthly 106(8), 759–763 (1999).

    Google Scholar 

  35. A. A. Ungar, “From Pythagoras to Einstein: the hyperbolic Pythagorean theorem,” Found. Phys. 28(8), 1283–1321 (1998).

    Google Scholar 

  36. J.-L. Chen, L. Fu, A. A. Ungar, and X.-G. Zhao, “Degree of entanglement for two qubits,” Phys. Rev. A (3) 65(4), 044303, 4 (2002).

    Google Scholar 

  37. J.-L. Chen, L. Fu, A. A. Ungar, and X.-G. Zhao, “Alternative fidelity measure between two states of an n-state quantum system,” Phys. Rev. A (3) 65, 054303, 3 (2002).

    Google Scholar 

  38. R.W. Spekkens and T. Rudolph, “Optimization of coherent attacks in generalizations of the bb84 quantum bit commitment protocol,” Quantum Inf. Comp. 2(1), 66–96 (2002).

    Google Scholar 

  39. Simon L. Altmann, Rotations, Quaternions, and Double Groups (Clarendon Press, Oxford, 1986).

    Google Scholar 

  40. B. R. Ebanks and C. T. Ng, “On generalized cocycle equations,” Aequationes Math. 46(1/2), 76–90 (1993).

    Google Scholar 

  41. K. Rózga, “On central extensions of gyrocommutative gyrogroups,” Pacific J. Math. 193(1), 201–218 (2000).

    Google Scholar 

  42. A. A. Ungar, “Weakly associative groups,” Resultate Math. 17(1/2), 149–168 (1990).

    Google Scholar 

  43. A. A. Ungar, “Thomas precession and its associated grouplike structure,” Amer. J. Phys. 59(9), 824–834 (1991).

    Google Scholar 

  44. A. A. Ungar, “Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics,” Found. Phys. 27(6), 881–951 (1997).

    Google Scholar 

  45. W. Krammer and H. K. Urbantke, “K-loops, gyrogroups and symmetric spaces,” Results Math. 33(3/4), 310–327 (1998).

    Google Scholar 

  46. A. Korányi, “Around the finite-dimensional spectral theorem,” Amer. Math. Monthly 108(2), 120–125 (2001).

    Google Scholar 

  47. H. Scutaru, “Fidelity for displaced squeezed thermal states and the oscillator semigroup,” J. Phys. A 31(15), 3659–3663 (1998).

    Google Scholar 

  48. Richard Jozsa, “Fidelity for mixed quantum states,” J. Modern Opt. 41(12), 2315–2323 (1994).

    Google Scholar 

  49. J. Preskill, Clatech Lecture Notes, URL: www.theory.caltech.edu/preskill/ph229.

  50. Artur Ekert, Marie Ericsson, Patrick Hayden, Hitoshi Inamori, Jonathan A. Jones, Daniel K. L. Oi, and Vlatko Vedral, “Geometric quantum computation,” J. Modern Opt. 47(14/15), 2501–2513 (2000). Seminar on Fundamentals of Quantum Optics, V (Kühtai, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungar, A.A. The Hyperbolic Geometric Structure of the Density Matrix for Mixed State Qubits. Foundations of Physics 32, 1671–1699 (2002). https://doi.org/10.1023/A:1021446605657

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021446605657

Navigation