Skip to main content
Log in

T Violation and the Unidirectionality of Time

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An increasing number of experiments at the Belle, BNL, CERN, DAΦNE and SLAC accelerators are confirming the violation of time reversal invariance (T). The violation signifies a fundamental asymmetry between the past and future and calls for a major shift in the way we think about time. Here we show that processes which violate T symmetry induce destructive interference between different paths that the universe can take through time. The interference eliminates all paths except for two that represent continuously forwards and continuously backwards time evolution. Evidence from the accelerator experiments indicates which path the universe is effectively following. This work may provide fresh insight into the long-standing problem of modeling the dynamics of T violation processes. It suggests that T violation has previously unknown, large-scale physical effects and that these effects underlie the origin of the unidirectionality of time. It may have implications for the Wheeler-DeWitt equation of canonical quantum gravity. Finally it provides a view of the quantum nature of time itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1996)

    Google Scholar 

  2. Aharony, A.: Microscopic irreversibility in the neutral kaon system and the thermodynamical arrow of time I. CPT symmetric case. Ann. Phys. 67, 1–18 (1971)

    Article  ADS  Google Scholar 

  3. Aharony, A.: Microscopic irreversibility in the neutral kaon system and the thermodynamical arrow of time II. CPT violating case. Ann. Phys. 68, 163–171 (1971)

    Article  ADS  Google Scholar 

  4. Berger, Ch., Sehgal, L.M.: CP violation and arrows of time: evolution of a neutral K or B meson from an incoherent to a coherent state. Phys. Rev. D 76, 036003 (2007)

    Article  ADS  Google Scholar 

  5. Christenson, J.H., Cronin, J.W., Fitch, V.L., Turlay, R.: Evidence for the 2π decay of the \(K_{2}^{0} \) meson. Phys. Rev. Lett. 13, 138–140 (1964)

    Article  ADS  Google Scholar 

  6. Sakharov, A.D.: Violation of CP symmetry, C asymmetry and baryon asymmetry of the universe. JETP Lett. 5, 24–26 (1967)

    ADS  Google Scholar 

  7. Pavlopoulos, P.: CPLEAR: an experiment to study CP, T and CPT symmetries in the neutral-kaon universe. Nucl. Phys. B 99, 16–23 (2001)

    Article  Google Scholar 

  8. Lusiani, A.: Tests of T and CPT symmetries at the B-factories. J. Phys. Conf. Ser. 171, 012037 (2009)

    Article  ADS  Google Scholar 

  9. Angelopoulos, A., et al. (CPLEAR Collaboration): First direct observation of time-reversal non-invariance in the neutral-kaon universe. Phys. Lett. B 444, 43–51 (1998)

    Article  ADS  Google Scholar 

  10. Cabibbo, N.: Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)

    Article  ADS  Google Scholar 

  11. Kobayashi, M., Maskawa, T.: CP-violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  12. Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    MATH  Google Scholar 

  13. The Belle Collaboration: Difference in direct charge-parity violation between charged and neutral B meson decays. Nature 452, 332–335 (2008)

    Article  Google Scholar 

  14. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  15. Barnett, S.M., Vaccaro, J.A.: The Quantum Phase Operator: A Review. Taylor & Francis, London (2007)

    MATH  Google Scholar 

  16. Lee, T.D., Wolfenstein, L.: Analysis of CP-noninvariant interactions and the \(K_{1} ^{0}\), \(K_{2} ^{0}\) system. Phys. Rev. 138, B1490–B1496 (1965)

    Article  ADS  Google Scholar 

  17. Rosenband, T., et al.: Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    Article  ADS  Google Scholar 

  18. Bennett, C.L.: Cosmology from start to finish. Nature 440, 1126–1131 (2006)

    Article  ADS  Google Scholar 

  19. Kofman, L., Linde, A., Starobinsky, A.A.: Reheating after Inflation. Phys. Rev. Lett. 73, 3195–3198 (1994)

    Article  ADS  Google Scholar 

  20. Misner, C.W.: Feynman quantization of general relativity. Rev. Mod. Phys. 29, 497–509 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Tolman, R.C.: On the use of the energy-momentum principle in general relativity. Phys. Rev. 35, 875–895 (1930)

    Article  ADS  Google Scholar 

  22. Tryon, E.P.: Is the universe a vacuum fluctuation? Nature 246, 396 (1973)

    Article  ADS  Google Scholar 

  23. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  24. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967)

    Article  ADS  MATH  Google Scholar 

  25. Alvarez, E.: Quantum gravity: an introduction to some recent results. Rev. Mod. Phys. 61, 561 (1989)

    Article  ADS  Google Scholar 

  26. Suzuki, M.: On the convergence of exponential operators—the Zassenhaus formula, BCH formula and systematic approximants. Commun. Math. Phys. 57, 193–200 (1977)

    Article  ADS  MATH  Google Scholar 

  27. Yao, W.-M., et al.: Review of particle physics. J. Phys. G, Nucl. Part. Phys. 33, 666–684 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan A. Vaccaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaccaro, J.A. T Violation and the Unidirectionality of Time. Found Phys 41, 1569–1596 (2011). https://doi.org/10.1007/s10701-011-9568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9568-x

Keywords

Navigation