Skip to main content
Log in

Non-deterministic inductive definitions

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We study a new proof principle in the context of constructive Zermelo-Fraenkel set theory based on what we will call “non-deterministic inductive definitions”. We give applications to formal topology as well as a predicative justification of this principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel, P.: The type theoretic interpretation of constructive set theory. In: Logic Colloquium ’77 (Proceedings of the conference Wrocław, 1977), Stud. Logic Found. Math., vol. 96, pp. 55–66. North-Holland, Amsterdam (1978)

  2. Aczel, P.: The type theoretic interpretation of constructive set theory: choice principles. In: The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), Stud. Logic Found. Math., vol. 110, pp. 1–40. North-Holland Publishing Co., Amsterdam (1982)

  3. Aczel, P.: The type theoretic interpretation of constructive set theory: inductive definitions. In: Logic, methodology and philosophy of science, VII (Salzburg, 1983), Stud. Logic Found. Math., vol. 114, pp. 17–49. North-Holland Publishing Co., Amsterdam (1986)

  4. Aczel, P.: Non-well-founded sets, volume 14 of CSLI Lecture Notes. Stanford University Center for the Study of Language and Information, Stanford, CA (1988)

  5. Aczel P.: Aspects of general topology in constructive set theory. Ann. Pure Appl. Logic 137(1–3), 3–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aczel, P., Ishihara, H., Nemoto, T., Sangu, Y.: Generalized geometric theories and set-generated classes. Preprint available from http://www.newton.ac.uk/preprints/NI12032.pdf, 27 March 2012 (submitted)

  7. Aczel, P., Rathjen, M.: Notes on constructive set theory. Technical report no. 40, Institut Mittag-Leffler (2000/2001)

  8. van den Berg B., De Marchi F.: Non-well-founded trees in categories. Ann. Pure Appl. Logic 146(1), 40–59 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. van den Berg, B., Moerdijk, I.: The axiom of multiple choice and models for constructive set theory. arXiv:1204.4045 (2012)

  10. van den Berg B., Moerdijk I.: Derived rules for predicative set theory: an application of sheaves. Ann. Pure Appl. Logic 163(10), 1367–1383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Griffor E., Rathjen M.: The strength of some Martin-Löf type theories. Arch. Math. Logic 33(5), 347–385 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishihara, H., Kawai, T.: Completeness and cocompleteness of the categories of basic pairs and concrete spaces. Math. Struct. Comput. Sci, 8 June (2012) (accepted)

  13. Martin-Löf, P.: Intuitionistic type theory, volume 1 of studies in proof theory. Lecture notes. Bibliopolis, Naples (1984)

  14. Moerdijk I., Palmgren E.: Wellfounded trees in categories. Ann. Pure Appl. Logic 104(1–3), 189–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Palmgren E.: Constructive completions of ordered sets, groups, and fields. Ann. Pure Appl. Logic 135(1–3), 243–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Palmgren E.: Quotient spaces and coequalisers in formal topology. J. UCS 11(12), 1996–2007 (2005) (electronic)

    MathSciNet  MATH  Google Scholar 

  17. Palmgren E.: Maximal and partial points in formal spaces. Ann. Pure Appl. Logic 137(1–3), 291–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rathjen M., Tupailo S.: Characterizing the interpretation of set theory in Martin-Löf type theory. Ann. Pure Appl. Logic 141(3), 442–471 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sambin G.: Some points in formal topology. Theor. Comput. Sci. 305(1–3), 347–408 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sambin, G.: The Basic Picture—Structures for Constructive Topology. Oxford University Press, Oxford (2012, forthcoming)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benno van den Berg.

Additional information

Supported by the Netherlands Organisation for Scientific Research (NWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, B. Non-deterministic inductive definitions. Arch. Math. Logic 52, 113–135 (2013). https://doi.org/10.1007/s00153-012-0309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0309-4

Keywords

Mathematics Subject Classification

Navigation