Skip to main content

Models and Simulations in the Historical Emergence of the Science of Complexity

  • Chapter
From System Complexity to Emergent Properties

Part of the book series: Understanding Complex Systems ((UCS))

Summary

As brightly shown by Mainzer [24], the science of complexity has many distinct origins in many disciplines. Those various origins has led to “an interdisciplinary methodology to explain the emergence of certain macroscopic phenomena via the nonlinear interactions of microscopic elements” (ibid.). This paper suggests that the parallel and strong expansion of modeling and simulation - especially after the Second World War and the subsequent development of computers - is a rationale which also can be counted as an explanation of this emergence. With the benefit of hindsight, one can find three periods in the methodologies of modeling in the empirical sciences: 1st the simple modeling of the simple, 2nd the simple modeling of the complex, 3rd the complex modeling and simulation of the complex. Our main thesis is that the current spreading (since the 90’s) of complex computer simulations of systems of models (where a simulation is no more a step by step calculus of a unique logico-mathematical model) is another promising dimension of the science of complexity. Following this claim, we propose to distinguish three different types of computer simulations in the context of complex systems’ modeling. Finally, we show that these types of simulations lead to three different types of weak emergence, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bedau, M.A.: Weak Emergence. In: Tomberlin, J. (ed.) Philosophical Perspectives: Mind, Causation and World, vol. 11, pp. 375–399. Blackwell, Malden (1997)

    Google Scholar 

  2. Bedau, M.A.: Downward Causation and the Autonomy of Weak Emergence. Special issue on Emergence and Downward Causation, Principia 6, 5–50 (2002)

    Google Scholar 

  3. Bergé, P., Pomeau, Y., Vidal, C.: Order within Chaos. Hermann & John Wiley & sons, Inc., Paris (1987)

    Google Scholar 

  4. Berkeley, I.: What the.. is a subsymbol? Minds and Machines 10(1), 1–14 (2000)

    Article  MathSciNet  Google Scholar 

  5. Berkeley, I.: What the.. is a symbol? Minds and Machines 18, 93–105 (2008)

    Article  Google Scholar 

  6. Bhala, U.: Understanding complex signaling networks through models and metaphors. Progress in Biophysics and Molecular Biology 81(1), 45–65 (2003)

    Article  Google Scholar 

  7. Braillard, P.A.: Que peut expliquer un modèle complexe et peut-on le comprendre? In: Kupiec, J.J., Lecointre, G., Silberstein, M., Varenne, F. (eds.) Modèles, Simulations, Systèmes, Syllepse, Paris, pp. 89–108 (2008)

    Google Scholar 

  8. Crombie, A.: Augustine to Galileo: The History of Science A.D. 400 - 1650, 1st edn. Penguin, London (1959) (revised edition 1969)

    Google Scholar 

  9. Deléage, J.-P.: Une histoire de l’écologie, La Découverte, Paris (1991)

    Google Scholar 

  10. Dessalles, J.L., Müller, J.P., Phan, D.: Emergence in Multi-agent Systems - Conceptual and Methodological Issues. In: Phan, D., Amblard, F. (eds.) Agent-Based Modeling and Simulation in the Social and Human Sciences, pp. 327–355. The Bardwell Press, Oxford (2007)

    Google Scholar 

  11. Duboz, R.: Intégration de modèles hétérogènes pour la modélisation et la simulation de systèmes complexes - Application à la modélisation multi-échelles en écologie marine, Thèse d’informatique, Université du Littoral (2004)

    Google Scholar 

  12. Duhem, P.: To Save the Phenomena: An Essay of the Idea of Physical Theory from Plato to Galileo, translated from Sauver les phénomènes - Essai sur la notion de théorie physique, University of Chicago Press, Paris, 1908 (1969)

    Google Scholar 

  13. Edwards, M.: Intérêt d’un modèle agrégé pour étudier le comportement et simplifier la simulation d’un modèle individu-centré de consommation couplé à un modèle de ressource en eau, Thèse d’informatique, Université Paris 6 - Pierre et Marie Curie (2004)

    Google Scholar 

  14. Goodman, N.: Routes of Reference. Critical Inquiry 8(1), 121–132 (1981)

    Article  Google Scholar 

  15. Grimm, V.: Ten years of individual-based modelling in ecology: what we have learned and what could we learn in the future? Ecological Modelling 115, 129–148 (1999)

    Article  Google Scholar 

  16. Haken, H.: Synergetics. Springer, Berlin (1977)

    Google Scholar 

  17. Hartmann, S.: The world as a process. In: Hegselmann, Müller, Troitzsch (eds.) Modelling and simulation in the social sciences from the philosophy of science point of view, pp. 77–100. Kluwer, Dordrecht (1996)

    Google Scholar 

  18. Huet, S., Edwards, M., Deffuant, G.: Taking into Account the Variations of Neighbourhood Sizes in the Mean-Field Approximation of the Threshold Model on a Random Network. Journal of Artificial Societies and Social Simulation 10(1) 10 (2007)

    Google Scholar 

  19. Huet, S., Deffuant, G.: Differential Equation Models Derived from an Individual-Based Model Can Help to Understand Emergent Effects. Journal of Artificial Societies and Social Simulation 11(2) 10 (2008)

    MathSciNet  Google Scholar 

  20. Humphreys, P.: Extending Ourselves - Computational Science, Empiricism, and Scientific Method. Oxford University Press, Oxford (2004)

    Google Scholar 

  21. Jensen, H.J.: Self-Organized Criticality - Emergent Complex Behavior in Physical and Biological Systems. Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  22. Kauffman, S.: At Home in the Universe - The Search for the Laws of Self-Organization and Complexity. Oxford University Press, Oxford (1995)

    Google Scholar 

  23. Laskar, J.: A numerical experiment on the chaotic behavior of the solar system. Nature 338(6212), 237–238 (1989)

    Article  Google Scholar 

  24. Mainzer, K.: Thinking in Complexity - The Complex Dynamics of Matter. Mind and Mankind. Springer, Berlin (1994); 3rd revised and enlarged edition: (1997)

    Google Scholar 

  25. Minsky, M.: Matter, Mind and Models. In: Proceedings of the International Federation of Information Processing Congress, vol. 1, pp. 45–49 (1965)

    Google Scholar 

  26. Mitchell, S.D.: Biological Complexity and Integrative Pluralism. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  27. Nicolis, G., Prigogine, I.: Exploring Complexity. W.H.Freeman & Co Ltd, New York (1989)

    Google Scholar 

  28. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990)

    MATH  Google Scholar 

  29. Russell, B.: On Denoting. Mind, new series 14, 479–493 (1905)

    Google Scholar 

  30. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)

    Google Scholar 

  31. Smolensky, P.: On the proper treatment of connectionism. The Behavioural and Brain Sciences 11, 1–74 (1988)

    Article  Google Scholar 

  32. Stöckler, M.: On Modeling and Simulations as Instruments for the Study of Complex Systems. In: Science at Century’s End. Proc. of the Pittsburgh/Konstanz Colloquium in the Philosophy of Science, October 1997, pp. 355–373. Univ. of Pittsburgh Press (2000)

    Google Scholar 

  33. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modelling. MIT Press Series in Scientific Computation (1987)

    Google Scholar 

  34. Ulam, S.: On some mathematical problems connected with patterns of growth of figures. In: Proceedings of Symposia in Applied Mathematics, vol. 14, pp. 215–224. American Mathematical Society (1962)

    Google Scholar 

  35. Varenne, F.: Du modèle à la simulation informatique, Vrin, Paris (2007)

    Google Scholar 

  36. Winsberg, E.: A Tale of Two Methods. Synthese (forthcoming) (2008)

    Google Scholar 

  37. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)

    Google Scholar 

  38. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation - Integrating discrete event and continuous complex dynamic systems. Academic Press, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varenne, F. (2009). Models and Simulations in the Historical Emergence of the Science of Complexity. In: Aziz-Alaoui, M.A., Bertelle, C. (eds) From System Complexity to Emergent Properties. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02199-2_1

Download citation

Publish with us

Policies and ethics