Skip to main content
Log in

Relativistic Schrödinger Theory and the Hartree–Fock Approach

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Within the framework of Relativistic Schrödinger Theory (RST), the scalar two-particle systems with electromagnetic interactions are treated on the basis of a non-Abelian gauge group U(2) which is broken down to the Abelian subgroup U(1)×U(1). In order that the RST dynamics be consistent with the (non-Abelian) Maxwell equations, there arises a compatibility condition which yields cross relationships for the links between the field strengths and currents of both particles such that self-interactions are eliminated. In the non-relativistic limit, the RST dynamics becomes identical to the well-known Hartree–Fock equations (for spinless particles). Consequently the original RST field equations may be considered as the relativistic generalization of the Hartree–Fock equations, and the “exchange interactions” of the conventional theory (induced by the anti-symmetrization postulate) do reappear here as ordinary gauge interactions due to a broken symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, 1995).

  2. M. Carmeli, Classical Fields, General Relativity, and Gauge Theory (World Scientific, 2001).

  3. B. Greene, The Elegant Universe. Superstrings, Hidden Dimensions and the Quest for the Ultimate Theory (Vintage Books, 2000).

  4. G. Mahan, Many-Particle Physics (Plenum, New York, 1986).

    Google Scholar 

  5. E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232(1951).

    Google Scholar 

  6. M. Gell-Mann and F. Low, Phys. Rev. 84, 351(1951).

    Google Scholar 

  7. Tao Zhang, Zong-Chao Yan, and G. W. F. Drake, Phys. Rev. Lett. 77, 1715(1996).

    Google Scholar 

  8. F. Gross, Phys. Rev. C 26, 2203(1982).

    Google Scholar 

  9. R. H. Landau, Quantum Mechanics II (Wiley, New York, 1990), p. 439.

    Google Scholar 

  10. M. Sorg, J. Phys. A 30, 5517(1997).

    Google Scholar 

  11. S. Rupp and M. Sorg, Phys. Rev. A 63, 022112(2001).

    Google Scholar 

  12. M. Mattes, S. Rupp, and M. Sorg, Can. J. Phys. 79, 879(2001).

    Google Scholar 

  13. S. Rupp, S. Hunzinger, and M. Sorg, Found. Phys 32, 705(2002).

    Google Scholar 

  14. L. E. Ballentine, Quantum Mechanics (World Scientific, 1999).

  15. W. Heisenberg, Zeitschr. Phys. 38, 411(1926); reprinted in Ref. 16.

    Google Scholar 

  16. I. Duck and E. C. G. Sudarshan, Pauli and the Spin-Statistics Theorem (World Scientific, 1998).

  17. P. A. M. Dirac, Proc. Roy. Soc. (London) A 112, 661(1926); reprinted in Ref. 16.

    Google Scholar 

  18. D. T. Blochincev, Quantum Mechanics (Reidel, Dordrecht, 1964).

    Google Scholar 

  19. F. Selleri, Quantum Paradoxes and Physical Reality (Kluwer Academic, 1990).

  20. R. Omnes, The Interpretation of Quantum Mechanics (Princeton University Press, 1994).

  21. S. Pruß-Hunzinger, S. Rupp, and M. Sorg, “Geometry and topology of relativistic two-particle quantum mixtures, ” Preprint, 2002.

  22. U. Ochs and M. Sorg, Gen. Rel. Grav. 28, 1177(1996).

    Google Scholar 

  23. S. Rupp, Phys. Rev. A 67, 034101(2003).

    Google Scholar 

  24. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience, 1963).

  25. W. Greiner, Relativistic Quantum Mechanics (Springer, 2000).

  26. T. Sigg and M. Sorg, Gen. Rel. Grav. 29, 1557(1997).

    Google Scholar 

  27. G. W. F. Drake, Atomic, Molecular, and Optical Physics Handbook (American Institute of Physics, 1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verschl, M., Sorg, M. Relativistic Schrödinger Theory and the Hartree–Fock Approach. Foundations of Physics 33, 913–954 (2003). https://doi.org/10.1023/A:1025617527838

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025617527838

Navigation