Skip to main content

Jean Gayon and the French School of Population Genetics

  • Chapter
  • First Online:
Philosophy, History and Biology: Essays in Honour of Jean Gayon

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 30))

  • 134 Accesses

Abstract

The history of evolutionary theory in France after 1859 and of genetics after 1900 is unique to this country, and most of it remained poorly understood until the historical studies conducted by Jean Gayon, Richard Burian, Doris Zallen and collaborators. Academic studies and teaching in evolutionary genetics in France developed only after geneticists Philippe L’Héritier (1906–1994) and Georges Teissier (1900–1972) conducted a series of experiments as of 1932. Having a dual background in descriptive zoology and mathematical biology, Teissier and L’Héritier were pioneers in experimental population genetics and were among the first geneticists to draw attention to the maintenance of polymorphism in populations as a major evolutionary issue in the 1930s. L’Héritier and Teissier used population cages (“démomètres”) as the main experimental paradigm to tackle this question. This provided the basis for a scientific school that flourished in Paris after WWII. This school is characterized by its interest in a variety of selective mechanisms potentially leading to a polymorphic equilibrium, even though most of its members remained outside the debates on polymorphism that raged in USA and UK in 1950–1970. L’Héritier and Teissier were generally at odds with neutralism, with the famous exception of the collaboration of one of its members, Maxime Lamotte (1920–2007), with French theoretician Gustave Malécot (1911–1998). This school never abandoned its deep roots in zoology, and while its image in France rested on its interest in Darwinism, it was established institutionally on a network of laboratories and periodicals in zoology, which can be viewed as a source of academic power. This led to some kind of isolation of this school, which eventually dissolved in the 1970s in a rising new generation of geneticists restoring international ties. The contribution of this school to French science is considerable since it introduced three fields: genetics, Darwinism and biological statistics.

Translated and adapted from Veuille (2018a, 2018b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    He had been de facto awarded this medal in 1946 as the director of a governmental institution (CNRS), but, being a staunch leftist, had not agreed to receive it; the de rigueur ceremony had apparently been skipped.

  2. 2.

    On Lamarckism and neo-Lamarckism as well as Gayons’ study of the inheritance of acquired characters, see the chapter by Tirard, this volume.

  3. 3.

    All translations from French are mine.

  4. 4.

    “Il a fallu qu’un Allemand, Haeckel, apprît à la France que le transformisme avait pour père un véritable français”; a sentence that Duval (1886, p. 437) attributes to Lanessan.

  5. 5.

    André Mayer, like Emmanuel Fauré-Frémiet (Ephrussi’s superviser) and Louis Blaringhem directed a laboratory at the EPHE (École Pratique des Hautes Études). EPHE was the main French research agency; it provided financial support, researchers and assistants to experimental laboratories, on the condition of annual reports; it had been founded by Louis Pasteur, Claude Bernard and other prominent scientists in 1868 to promote scientific research, and was based according to Marcellin Berthelot on “the absolute freedom guaranteed to each of the persons who contribute to the theoretical and practical teaching” (Fournier 1980, p. 17); its members were recruited for life on the basis of scientific excellence, and for this reason were free to encourage whatever they thought was an emergent field (Henriet & Veuille 2018; Veuille 2018a, 2018b). After WWII, EPHE was replaced in this function by several national institutes, including the CNRS (Centre National de la Recherche Scientifique), which provided support to laboratories through a renewable term of five years with evaluation; their function was also to define a national strategy of research (Veuille 2018a, 2018b).

  6. 6.

    This short book was published in a collection directed by Teissier that covered all recent advances in mathematical approaches to population biology, with volumes by Lotka, Volterra, Wright, Gause and himself.

  7. 7.

    Many academics became Resistant when Pétain’s collaboration regime took power in France in 1940; the communists joined them after the German invasion of Soviet Union in 1941 and set up the most active group of armed resistance, the FTPs (“Franc-tireurs et Partisans”). Marcel Prenant, a colleague of Teissier in the zoology department of ENS, and a notorious communist, became the head of the headquarters of FTPs. As an intellectual figure, he oversaw coordination between the communist and Gaullist resistances but was not in charge of armed groups. He recruited Teissier as his deputy, and, when caught by the nazis and deported to a concentration camp, was replaced by him. Teissier and the Gaullists succeeded in coordinating their action. Teissier became an official chief of united French resistance and co-signed the order of insurgency of Paris in August 1944, leading to the liberation of the city by the Resistance while the allied army was heading east after the Normandy landing. This action protected the city from destruction, counteracting Hitler’s orders to destroy it. After WWII Teissier became a prominent leader of the French research system as the chairman of the CNRS (National Center of Scientific Research). But due to his political affiliation, pressures led to his resignation after the onset of the Cold War. He was also on a tightrope on the other side. While the Soviet Union was celebrating Lysenko, this overt French leader of scorned “Mendelism-Morganism” raised suspicion from the CP. Prenant, a zoologist, sided with geneticists and was expelled from the central committee of the party.

  8. 8.

    As of 1937, Ephrussi and Teissier became directors of laboratories at the EPHE, which was unusual, if not unprecedented, for simple assistant professors, meaning that their work was fully acknowledged. During WWII Teissier replaced Robert Levy both as professor and director of the ENS zoology department after his dismissal due to Pétain’s so-called “laws on Jews” that barred Jews from teaching positions.

  9. 9.

    This laboratory belonged to a group of three laboratories built while he was chairman of the CNRS. They were the first three genetic institutes ever opened in France (Burian, Gayon and Zallen 1988).

  10. 10.

    “Errors of sampling” was Wright’s initial expression for random genetic drift (Veuille 2019); the French school called it the “Wright effect” (“l’effet Wright”), in line with Fisher school’s expression (Fisher & Ford 1950).

  11. 11.

    She had been sentenced to 20 years in prison by a French court under Pétain’s regime, then sentenced to death in absentia by the Germans, but she escaped and hid safely till the end of the war.

  12. 12.

    “We shall not dedarwinize”!

  13. 13.

    Loison (2013) mentions that in his non-scientific writings, including in his academic CVs, Teissier said he believed that some form of cytoplasmic inheritance could reconcile microevolution and macroevolution. Loison adds that Teissier had no time to develop these views in academic journals or in a book. It would be worthwhile to examine this project in the specific context of debates about evolutionary mechanisms in France.

  14. 14.

    As a graduate student, I was rebuked by Bocquet for submitting a manuscript in English to a Canadian journal. I only then found out that I had crossed a line that no researcher in the laboratory had ever crossed.

  15. 15.

    PPD: “petit-pois déridé” (“unwrinkled pea”) is tribute to Mendel, but also means “laughing pea”, a deliberate joke typical of the relaxed and humorous mood of this new period.

References

  • Abbadie, L., Gignoux, J., Le Roux, X., & Lepage, M. (Eds.). (2005). Lamto: structure, functioning and dynamics of a savanna ecosystem. Springer.

    Google Scholar 

  • Anxolabéhère, D. (1976). Heterosis overdominance and frequency-dependent selection in Drosophila melanogaster at the sepia locus. Evolution, 30, 523–534.

    Article  Google Scholar 

  • Anxolabéhère, D., Goux, J.-M., & Périquet, G. (1982). A bias in estimation of variabilities from competition experiments. Heredity, 48, 271–282.

    Article  Google Scholar 

  • Ashburner, M., & Lemeunier, F. (1976). Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). I. Inversion polymorphisms in Drosophila melanogaster and Drosophila simulans. Proceedings of the Royal Society B, 193, 137–157.

    Google Scholar 

  • Aulard, S. (1990). Polymorphisme chromosomique de Drosophila melanogaster en Afrique et dans les iles de I’Océan Indien. Paris: Doctoral Thesis, P. and M. Curie University.

    Google Scholar 

  • Baudry, E., Viginier, B., & Veuille, M. (2004). Non-African populations of Drosophila melanogaster have a unique origin. Molecular Biology and Evolution, 21, 1482–1891.

    Article  Google Scholar 

  • Baudry, E., Derome, N., Huet, M., & Veuille, M. (2006). Contrasted polymorphism patterns in a large sample of populations from the evolutionary genetics model Drosophila simulans. Genetics, 173, 759–767.

    Article  Google Scholar 

  • Bernard, C. (1865). Introduction à l’étude de la médecine expérimentale. Baillière & fils.

    Google Scholar 

  • Bernard, C. (1867). Rapport sur les progrès et la marche de la physiologie générale en France. Imprimerie impériale: 216.

    Google Scholar 

  • Blanckaert, Cl. (2009). De la race à l’évolution. Paul Broca et l’anthropologie française (1850–1900). L’Harmattan.

    Google Scholar 

  • Blanckaert, C., Diara, A., Dougherty, F., Fisher J.-L. et al. (Eds.). (1979). Les néo-lamarckiens français. Revue de synthèse, 95–96.

    Google Scholar 

  • Blaringhem, L. (1928). Principes et formules de l’hérédité mendélienne. Gauthier-Villard et Cie.

    Google Scholar 

  • Bocquet, C. (1953). Recherches sur le polymorphisme naturel des Jaera marina (Fabr.). (Isopodes Asellotes). Essai de systématique évolutive. Archives de zoologie expérimentale et générale, 90, 187–450.

    Google Scholar 

  • Boesiger, E. (1962). Sur le degré d’hérétozygosité des populations naturelles de Drosophila melanogaster et son maintien par la sélection sexuelle. Bulletin biologique de France et de Belgique, 96, 3–122.

    Google Scholar 

  • Boesiger, E. (1980). Evolutionary biology in France at the time of the evolutionary synthesis. In E. Mayr & W. B. Provine (Eds.), The evolutionary synthesis. Perspectives on the unification of biology (pp. 309–321). Harvard University Press.

    Google Scholar 

  • Bœuf, F. (1936). Bases scientifiques de l’amélioration des plantes. Lechevalier.

    Google Scholar 

  • Broca, P. (1867). Congrès international d’anthropologie et d’archéologie préhistorique, 2e session.

    Google Scholar 

  • Burian, R., & Gayon, J. (1999). The French school of genetics: From physiological and population genetics to regulatory molecular genetics. Annual Review of Genetics, 33, 313–349.

    Article  Google Scholar 

  • Burian, R., Gayon, J., & Zallen, D. (1988). The singular fate of Genetics in the History of French Biology, 1900–1940. Journal of the History of Biology, 21, 357–402.

    Article  Google Scholar 

  • Charniaux-Cotton H., (1957). Croissance, régénération et déterminisme endocrinien des caractères sexuels secondaires d’Orchestia gammarella (Pallas). Crustacé amphipode. Thèse.

    Google Scholar 

  • Chouard, P., & Teissier, G. (1932). Variation de l’intensité de croissance chez les plantules de melon au cours du développement et en fonction de la quantité de réserves disponibles. Comptes rendus de l’Académie des sciences, série des sciences de la vie, 194, 1976–1978.

    Google Scholar 

  • Conry, Y. (1974). L’introduction du darwinisme en France au XIXe siècle. Vrin.

    Google Scholar 

  • Crow, J. F. (1995). Motoo Kimura (1924–1994). Genetics, 140, 1–5.

    Article  Google Scholar 

  • Darwin, C. (1859). The origin of species by means of natural selection. John Murray.

    Google Scholar 

  • David, J. (1961). Influence de l’état physiologique des parents sur les caractères des descendants; étude chez Drosophila melanogaster Meigen. Thèse.

    Google Scholar 

  • Delage, Y., & Goldsmith, M. (1909). Les Théories de l’évolution. Flammarion.

    Google Scholar 

  • Demerec, M. (Ed.) (1959). Genetics and the twentieth century Darwinism. Cold Spring Harbor Symposia on Quantitative Biology, 24.

    Google Scholar 

  • Dobzhansky, T. (1947). Adaptive changes induced by natural selection in wild populations of Drosophila. Evolution, 1, 1–16.

    Article  Google Scholar 

  • Dobzhansky, T. (1965). “Wild” and “domestic” species of Drosophila. In H. G. Baker & G. L. Stebbins (Eds.), The genetics of colonizing species (pp. 533–546). Academic Press.

    Google Scholar 

  • Dobzhansky, T., & Boesiger, E. (1968). Essai sur l’évolution. Masson.

    Google Scholar 

  • Duval, M. (1886). Le darwinisme. Delahaye & Lecrosnier.

    Google Scholar 

  • Ehrman, L. (1967). Further studies on genotype frequency and mating success in Drosophila. American Naturalist, 101, 415–424.

    Article  Google Scholar 

  • Ephrussi, B., & Teissier, G. (1932). Étude quantitative de la croissance des tissus. I. La Croissance Résiduelle. Arch. Exp. Zellforschung, 13, 1–29.

    Google Scholar 

  • Falconer, D. S. (1961). Introduction to quantitative genetics. Oliver & Boyd.

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Clarendon Press.

    Book  Google Scholar 

  • Fisher, R. A., & Ford, E. B. (1950). The “Sewall Wright Effect.” Heredity, 4, 117–119.

    Article  Google Scholar 

  • Fournier, P. (1980). La terre et la vie : un siècle de recherches. Paris: Publications de la 3e Section de l’École Pratique des Hautes Études.

    Google Scholar 

  • Gachet, G., Genier, G., Huguet, L. (1961). Traduction partielle et simplifiée de ‘Introduction à la génétique quantitative’ par D. S. Falconer. Hand-out, date unknown posterior to 1961.

    Google Scholar 

  • Gause, G. F. (1935). Vérifications expérimentales de la théorie mathématique de la lutte pour la vie. Hermann & Cie.

    Google Scholar 

  • Gayon, J. (1992). Darwin et l’après-Darwin. Une histoire de l’hypothèse de sélection dans la théorie de l’évolution. Kimé.

    Google Scholar 

  • Gayon, J. (1995). Les premiers pastoriens et l’hérédité. Bulletin de la société d’histoire et d’épistémologie des sciences de la vie, 2, 193–204.

    Google Scholar 

  • Gayon, J. (1998). Darwinism’s struggle for survival. Cambridge University Press.

    Google Scholar 

  • Gayon, J. (1999). On the uses of the category of style in the history of science. Philosophy and Rhetoric, 32, 233–246.

    Google Scholar 

  • Gayon, J. (2006). L’hérédité des caractères acquis : origines d’un terme. In P. Corsi, J. Gayon, G. Gohau, & S. Tirard (Eds.), Lamarck, philosophe de la nature (pp. 105–163). Presses universitaires de France.

    Google Scholar 

  • Gayon, J. (2013). Claude Bernard et l’hérédité. In F. Duchesneau, J.-J. Kupiec, & M. Morange (Eds.), Claude Bernard. La méthode de la physiologie (pp. 115–132). Éditions rue d’Ulm.

    Google Scholar 

  • Gayon, J. (2014). Une expérience de sélection naturelle en conditions naturelles : L’Héritier, Neefs et Teissier, 1937. In L. Loison (Ed.), Le laboratoire CNRS de génétique évolutive de Gif. De part et d’autre de l’œuvre de Georges Tessier (pp. 65–80). Hermann.

    Google Scholar 

  • Gayon, J. (2015). Sexual selection in the French school of population genetics: Claudine Petit (1920–2007). In T. Hoquet (Ed.), Current perspectives on sexual selection. What’s left after Darwin? (pp. 65–81). Springer.

    Google Scholar 

  • Gayon, J. (2016). Biométrie et génétique des populations. Échanges franco-britanniques dans l’entre-deux guerres. Bulletin d’histoire et d’épistémologie des sciences de la vie, 23, 7–26.

    Google Scholar 

  • Gayon, J., & Zallen, D. (1998). The role of the Vilmorin company in the promotion and diffusion of the experimental science of heredity in France, 1840–1920. Journal of the History of Biology, 31, 241–262.

    Article  Google Scholar 

  • Gayon, J., & Burian, R. (2000). France in the era of Mendelism. Comptes-rendus de l’Académie des sciences, série des sciences de la vie, 323, 1097–1106.

    Google Scholar 

  • Gayon, J., & Veuille, M. (2001). The genetics of experimental populations: L’Héritier and Teissier’s population cages (1932–1954). In R. Singh et al. (Eds.), Thinking about evolution. Historical, philosophical & political perspectives (pp. 77–102). Cambridge University Press.

    Google Scholar 

  • Gayon, J., & Burian, R. (2004). National traditions and the emergence of genetics: The French example. Nature Reviews Genetics, 5, 150–156.

    Article  Google Scholar 

  • Gillois, M. (2002). The scientific work of Gustave Malécot (1911–1998); our common heritage. In M. Slatkin & M. Veuille (Eds.), Modern developments in theoretical population genetics. The legacy of Gustave Malécot (pp. 7–19). Oxford University Press.

    Google Scholar 

  • Haeckel, E. (1874). Histoire de la création des êtres organisés d’après les lois naturelles. Traduction par le Dr. Ch. Létourneau, introduction par Charles Martins. Reinwald.

    Google Scholar 

  • Haldane, J. B. S. (1932). The causes of evolution. Longmans Green.

    Google Scholar 

  • Harris, H. (1966). Enzyme polymorphism in man. Proceedings of the Royal Society of London, B: Biological Sciences, 164, 298–310.

    Google Scholar 

  • Henriet, P., & Veuille, M. (2018). Les origines. In P. Henriet (Ed.), École Pratique des Hautes Études: invention, érudition, innovation, de 1868 à nos jours (pp. 25–45). Somogy.

    Google Scholar 

  • Hubby, J. L., & Lewontin, R. C. (1966). A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics, 54, 546–595.

    Article  Google Scholar 

  • Huxley, J. S. (1924). Constant differential growth ratios ad their significance. Nature, 114, 895–896.

    Article  Google Scholar 

  • Huxley, J.-S. (1932). Problems in relative growth. Lincoln Mac Veagh, The Dial Press.

    Google Scholar 

  • Huxley, J. S., & Teissier, G. (1936a). Terminology of relative growth. Nature, 137, 780–781.

    Article  Google Scholar 

  • Huxley, J.-S., & Teissier, G. (1936b). Terminologie et notation dans la croissance relative. Comptes-Rendus Hebdomadaires De La Société De Biologie, 121, 934–937.

    Google Scholar 

  • Huxley, J.-S., & Teissier, G. (1936c). Zur Terminologie des relativen Grössenwachtums. Biologisches Zentralblatt, 56, 381–383.

    Google Scholar 

  • Ishida, Y. (2009). Sewall Wright and Gustave Malécot on isolation by distance. Philosophy of Science, 76, 784–796.

    Article  Google Scholar 

  • Ishida, Y., & Rosales, A. (2019). The origins of the stochastic theory of population genetics: the Wright-Fisher model. Studies in History and Philosophy of Biological and Biomedical Sciences, 79.

    Google Scholar 

  • Jacquard, A. (1974). The genetic structure of populations. Springer.

    Book  Google Scholar 

  • Jacquard, A. (1977). Concepts en génétique des populations. Masson.

    Google Scholar 

  • Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626.

    Article  Google Scholar 

  • Kostitzin, V. A. (1934). Symbiose, parasitisme et évolution (étude mathématique). Hermann.

    Google Scholar 

  • Lachaise, D., Lemeunier, F., & Veuille, M. (1981). Clinal variation in male genitalia in Drosophila teissieri Tsacas. The American Naturalist, 117, 600–608.

    Article  Google Scholar 

  • Lachaise, D., Cariou, M.-L., David, J. R., Lemeunier, F., & Tsacas, L. (1988). Historical biogeography of the Drosophila melanogaster species subgroup. Evolutionary Biology, 22, 159–225.

    Article  Google Scholar 

  • Lachaise, D., Harry, M., Solignac, M., & Lemeunier, F. (2000). Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé. Proceedings of the Royal Society of London b: Biological Sciences, 267, 1487–1495.

    Article  Google Scholar 

  • Lachenal, G. (2015). At home in the postcolony: Ecology, empire and domesticity at the Lamto field station, Ivory Coast. Social Studies of Science, 46, 877–893.

    Article  Google Scholar 

  • Lamarck, J.-B. (1809). Philosophie zoologique. Dentu.

    Google Scholar 

  • Lambert, R., & Teisssier, G. (1927). Théorie de la similitude biologique. Comptes rendus de l’Académie des sciences de Paris, 184, 121–123.

    Google Scholar 

  • Lamotte, M. (1951). Recherches sur la structure génétique des populations naturelles de Cepaea nemoralis (L). Éditions Du Bulletin Biologique De La France Et De La Belgique, Suppl., 35, 1–238.

    Google Scholar 

  • Lamotte, M. (1957). Initiation aux méthodes statistiques en biologie. Masson.

    Google Scholar 

  • Lamotte, M. (1959). Polymorphism of natural populations of Cepaea nemoralis. Cold Spring Harbor Symposia on Quantitative Biology, 24, 65–86.

    Article  Google Scholar 

  • Lamotte, M. (Ed.). (1974). Le polymorphisme dans le règne animal, volume publié par la Société zoologique de France à la mémoire de Georges Teissier. Mémoires de la Société zoologique de France n° 37.

    Google Scholar 

  • Lemeunier, F., David, J. R., Tsacas, L., & Ashburner, M. (1986). The melanogaster species group. In M. Ashburner, H. L. Carson., & J. N. Thompson Jr. (Eds.), The genetics and biology of drosophila V. 3 (pp. 147–256). Academic Press.

    Google Scholar 

  • Lerner, M. (1954). Genetic homeostasis. Oliver & Boyd.

    Google Scholar 

  • Lewontin, R. C. (1974). The genetic basis of evolutionary change. Columbia University Press.

    Google Scholar 

  • L’Héritier, P. (1934). Génétique et évolution, analyse de quelques études mathématiques sur la sélection naturelle. Hermann.

    Google Scholar 

  • L’Héritier, P. (1949a). Traité de génétique, T. 1: Le mécanisme de l’hérédité; hénétique formelle. Presses Universitaires de France.

    Google Scholar 

  • L’Héritier, P. (1949b). Traité de génétique, T. 2: la génétique des populations. Presses Universitaires de France.

    Google Scholar 

  • L’Héritier, P. (1949c). Les méthodes statistiques dans l’expérimentation biologique. Éditions du CNRS.

    Google Scholar 

  • L’Héritier, P., Neefs, Y., & Teissier, G. (1937). Aptérisme des insectes et sélection naturelle. Comptes rendus de l’Académie des sciences, 204, 907–909.

    Google Scholar 

  • L’Héritier, P., & Teissier, G. (1937). Une anomalie physiologique héréditaire chez la drosophile. Comptes-Rendus De L’académie Des Sciences, 205, 1099–1101.

    Google Scholar 

  • Limoges, C. (1980). A second glance at evolutionary biology in France. In E. Mayr & W. Provine (Eds.), The evolutionary synthesis: Perspectives on the unification of biology (pp. 322–328). Harvard University Press.

    Chapter  Google Scholar 

  • Loison, L. (2010). Qu’est-ce que le néolamarckisme? Les biologistes français et la question de l’évolution des espèces. Vuibert.

    Google Scholar 

  • Loison, L. (2013). Georges Teissier (1900–1972) and the modern synthesis in France. Genetics, 195, 295–302.

    Article  Google Scholar 

  • Loison, L., Gayon, J., & Burian, R. (2016). The contributions—and collapse—of Lamarckian heredity in Pasteurian molecular biology: 1. Lysogeny, 1900–1960. Journal of History of Biology, 50(1), 5–52.

    Google Scholar 

  • López Beltrán, C. (1992). Human heredity 1750–1870; The construction of a domain. PhD Dissertation, University of London.

    Google Scholar 

  • Lotka, A. J. (1934). Théorie analytique des associations biologiques. Première Partie: Principes. Hermann.

    Google Scholar 

  • Lotka, A. J. (1939). Théorie analytique des associations biologiques. Deuxième Partie: Analyse démographique et application particulière à l’espèce humaine. Hermann.

    Google Scholar 

  • Michaux, J. (2018a). Louis Thaler (1930–2002). In P. Henriet (Ed.), École Pratique des Hautes Études : invention, érudition, innovation, de 1868 à nos jours (pp. 172–173). Somogy.

    Google Scholar 

  • Michaux, J. (2018b). René Lavocat (1910–2007). In P. Henriet (Ed.), École Pratique des Hautes Etudes : invention, érudition, innovation, de 1868 à nos jours (p. 189). Somogy.

    Google Scholar 

  • Millstein, R. (2008). Distinguishing drift and selection empirically: The great snail debate of the 1950s. Journal of the History of Biology, 41, 339–367.

    Article  Google Scholar 

  • Millstein, R. (2009). Concepts of drift and selection in the great snail debate of the 1950s and early 1960s. Transactions of the American Philosophical Society, 99, 271–298.

    Google Scholar 

  • Monod, J. (1942). Recherches sur la croissance des bactéries. Hermann & Cie.

    Google Scholar 

  • Monod, J., & Teissier, G. (1936). Comptes-Rendus De L’académie Des Sciences, 202, 162–164.

    Google Scholar 

  • Montchamp-Moreau, C., Ginhoux, V., & Atlan, A. (2001). The Y chromosomes of Drosophila simulans are highly polymorphic for their ability to suppress sex-ratio drive. Evolution, 55, 728–737.

    Article  Google Scholar 

  • Morin, F., & Monod, J. (1942). Sur l’expression analytique de la croissance des populations bactériennes. Revue scientifique, 5, 227–229.

    Google Scholar 

  • Morrell, J. B. (1979). The chemists breeders: The research school of Liebig and Thomson. Ambix, 19, 1–46.

    Article  Google Scholar 

  • Nagylaki, T. (1989). Gustave Malécot and the transition from classical to modern population genetics. Genetics, 121, 103–118.

    Google Scholar 

  • Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J., & Britton-Davidian, J. (1987). Manuel technique de génétique par électrophorèse des protéines. Lavoisier.

    Google Scholar 

  • Pearl, R. (1928). The rate of living.

    Google Scholar 

  • Periquet, G. (1979). Study of some factors maintaining the ‘atrophie gonadique’ character in experimental populations of Drosophila melanogaster. Genetica, 51, 27–32.

    Article  Google Scholar 

  • Petit, C. (1951). Le rôle de l’isolement sexuel dans l’évolution des populations de Drosophila melanogaster. Bulletin biologique de France et de Belgique, 85, 392–418.

    Google Scholar 

  • Picard, G., & L’Heritier, P. (1971). A maternally inherited factor inducing sterility in D. melanogaster. Drosophila Information Service, 46, 54–54.

    Google Scholar 

  • Provine, W. B. (1971). The origins of theoretical population genetics. The University of Chicago Press.

    Google Scholar 

  • Roger, J. (1979). Les néo-lamarckiens français [présentation]. Revue de synthèse, 95–96, 279–282.

    Google Scholar 

  • Slatkin, M., & Veuille, M. (Eds.). (2002). Modern developments in theoretical population genetics. The legacy of Gustave Malécot. Oxford University Press.

    Google Scholar 

  • Solignac, M., Monnerot, M., & Mounolou, J. C. (1986). Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. Journal of Molecular Evolution, 23(1), 31–40.

    Article  Google Scholar 

  • Teissier, G. (1934). Dysharmonies et discontinuités dans la croissance. Hermann.

    Google Scholar 

  • Teissier, G. (1937). Les lois quantitatives de la croissance. Hermann.

    Google Scholar 

  • Teissier, G. (1944). Équilibre des gènes létaux dans les populations stationnaires panmictiques. Revue scientifique, 82, 145–154.

    Google Scholar 

  • Teissier, G. (1958). Titres et travaux scientifiques. Prieur et Robin.

    Google Scholar 

  • Teissier, G., & Bocquet, C. (1960). Génétique des populations de Sphaeroma serratum; stabilité du polychromatisme local. Cahiers De Biologie Marine, 1, 221–230.

    Google Scholar 

  • Timofeeff-Ressovsky, N. W. (1940). Mutations and geographicla variation. In J. Huxley (Ed.), The new systematics (pp. 73–136). Oxford University Press.

    Google Scholar 

  • Tsacas, L., & Lachaise, D. (1974). Quatre nouvelles espèces de la Côte d’lvoire du genre Drosophila, groupe melanogaster et discussion de I’origine du sous-groupe melanogaster (Diptera:Drosophilidae). Annales de l’Université d’Abidjan: Écologie, 7, 193–211.

    Google Scholar 

  • Valdeyron, G. (1961). Cours de génétique de l’I.N.A. Paris: Centre de Documentation Universitaire et S.E.D.E.S réunis.

    Google Scholar 

  • Veuille, M. (2018a). La section des sciences naturelles et de physiologie. In P. Henriet (Ed.), École Pratique des Hautes Études : invention, érudition, innovation, de 1868 à nos jours (pp. 59–71). Somogy.

    Google Scholar 

  • Veuille, M. (2018b). Jean Gayon et l’école française de génétique des populations. In F. Merlin & P. Huneman (Eds.), Philosophie, histoire, biologie: mélanges offerts à Jean Gayon (pp. 135–150). Éditions Matériologiques.

    Google Scholar 

  • Veuille, M. (2019). Chance, variation and shared ancestry: Population genetics after the synthesis. Journal of the History of Biology, 52, 537–567.

    Article  Google Scholar 

  • Veuille, M., & King, L. M. (1995). Molecular bases of polymorphism at the Esterase-5B locus of Drosophila pseudoobscura. Genetics, 141, 255–262.

    Article  Google Scholar 

  • Veuille, M., Bénassi, V., Aulard, S., & Depaulis, F. (1998). Allele-specific population structure of Drosophila melanogaster Alcohol dehydrogenase at the molecular level. Genetics, 149, 971–981.

    Article  Google Scholar 

  • Viré, M. (1979). La création de la chaire d’étude de ‘L’évolution des êtres organisés’ à la Sorbonne en 1888. Revue De Synthèse, 95–96, 377–392.

    Google Scholar 

  • Volterra, V., & D’Ancona, V. (1934). Les associations biologiques étudiées au point de vue mathématique. Hermann.

    Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection. In D. F. Jones (Ed.), Proceedings of the sixth international congress of genetics (pp. 356–366). Genetics Society of America.

    Google Scholar 

  • Wright, S. (1939). Statistical genetics in relation to evolution. Hermann & Cie.

    Google Scholar 

  • Wright, S., & Dobzhansky, T. (1946). Genetics of natural populations. XII. Experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics, 31, 125–156.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Claude Lévi for discussions about the Teissier years. I owe much to the late Lily Joly for help and discussion. I thank Jean-Baptiste Grodwohl for comments on an earlier version of this paper. I thank Françoise Benhamou, Jean Luc Da Lage, Catherine Montchamp-Moreau and Laure Kaiser-Arnauld for iconography. I thank the documentation department of EPHE for keeping the Teissier archives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Veuille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veuille, M. (2023). Jean Gayon and the French School of Population Genetics. In: Méthot, PO. (eds) Philosophy, History and Biology: Essays in Honour of Jean Gayon. History, Philosophy and Theory of the Life Sciences, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-031-28157-0_9

Download citation

Publish with us

Policies and ethics