Skip to main content
Log in

Martin’s maximum revisited

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We present several results relating the general theory of the stationary tower forcing developed by Woodin with forcing axioms. In particular we show that, in combination with class many Woodin cardinals, the forcing axiom MM ++ makes the \({\Pi_2}\)-fragment of the theory of \({H_{\aleph_2}}\) invariant with respect to stationary set preserving forcings that preserve BMM. We argue that this is a promising generalization to \({H_{\aleph_2}}\) of Woodin’s absoluteness results for \({L(\mathbb{R})}\). In due course of proving this, we shall give a new proof of some of these results of Woodin. Finally we relate our generic absoluteness results with the resurrection axioms introduced by Hamkins and Johnstone and with their unbounded versions introduced by Tsaprounis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audrito, G., Viale, M.: Absoluteness via resurrection. arXiv:1404.2111

  2. Bagaria J.: Bounded forcing axioms as principles of generic absoluteness. Arch. Math. Log. 39(6), 393–401 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen P.J.: The independence of the continuum hypothesis. Proc. Natl. Acad. Sci. USA 50, 1143–1148 (1963)

    Article  Google Scholar 

  4. Cox S.: The diagonal reflection principle. Proc. Am. Math. Soc. 140(8), 2893–2902 (2012)

    Article  MATH  Google Scholar 

  5. Farah I.: All automorphisms of the Calkin algebra are inner. Ann. Math. (2) 173(2), 619–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Foreman M., Magidor M., Shelah S.: Martin’s maximum, saturated ideals, and nonregular ultrafilters. I. Ann. Math. (2) 127(1), 1–47 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamkins J.D., Johnstone T.A.: Resurrection axioms and uplifting cardinals. Arch. Math. Log. 53(3–4), 463–485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jech, T.: Set theory. Springer Monographs in Mathematics. Springer, Berlin, The third millennium edition, revised and expanded (2003)

  9. Kunen, K.: Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland, Amsterdam (1980)

  10. Larson, P.B.: Forcing over models of determinacy. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, Vols. 1, 2, 3, pp. 2121–2177. Springer, Dordrecht (2010)

  11. Larson, P.B.: The stationary tower. University Lecture Series, vol. 32, American Mathematical Society, Providence, RI. Notes on a course by W. Hugh Woodin (2004)

  12. Moore J.T.: Set mapping reflection. J. Math. Log. 5(1), 87–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moore J.T.: A five element basis for the uncountable linear orders. Ann. Math. (2) 163(2), 669–688 (2006)

    Article  MATH  Google Scholar 

  14. Shelah S.: Infinite abelian groups, Whitehead problem and some constructions. Israel J. Math. 18, 243–256 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stavi, J., Väänänen, J.: Reflection principles for the continuum. Logic and algebra, Contemp. Math., vol. 302, Amer. Math. Soc., Providence, RI, pp. 59–84 (2002)

  16. Todorcevic S.: Generic absoluteness and the continuum. Math. Res. Lett. 9(4), 465–471 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsaprounis, K.: Large cardinals and resurrection axioms. (Ph.D. thesis) (2012)

  18. Viale M.: Guessing models and generalized Laver diamond. Ann. Pure Appl. Log. 163(11), 1660–1678 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Viale, M.: Category forcings, MM +++, and generic absoluteness for the theory of strong forcing axioms. arXiv:1305.2058

  20. Viale M., Weiß C.: On the consistency strength of the proper forcing axiom. Adv. Math. 228(5), 2672–2687 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Woodin, W.H.: The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal. de Gruyter Series in Logic and its Applications, vol. 1. Walter de Gruyter & Co., Berlin (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Viale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viale, M. Martin’s maximum revisited. Arch. Math. Logic 55, 295–317 (2016). https://doi.org/10.1007/s00153-015-0466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-015-0466-3

Keywords

Mathematics Subject Classification

Navigation