Skip to main content
Log in

From self-organization to self-assembly: a new materialism?

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant’s Critique of Judgement, the term ‘self-assembly’ has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The phrase ‘soft chemistry’ (chimie douce in French) has been coined in a programmatic tone by Jacques Livage “Vers une chimie écologique”  Le Monde, 26 October 1977 where he formulated the question: “will it be possible to invent a soft chemistry would be harmoniously integrated in natural processes?”

  2. Maureen O’Malley (2009) has rightly emphasized the gap between this self-representation of a number of synthetic biologists and their actual engineering practice, which involves a lot of kludging.

References

  • Atlan, H. (1972). L’organisation biologique et la théorie de l’information. Paris: Hermann.

    Google Scholar 

  • Atlan, H. (1979). Entre le cristal et la fumée. Paris: Seuil-Point science.

    Google Scholar 

  • Ball, P. (2002). Natural strategies for the molecular engineer. Nanotechnology, 13, 15–28.

    Article  Google Scholar 

  • Barad, K. (2003). Posthumanist performativity: Toward an understanding of how matter comes to matter. Signs, 28(3), 801–831.

    Article  Google Scholar 

  • Benner, S., Chen, F., & Yang, Z. (2011). Synthetic biology, tinkering biology, and artificial biology: A perspective from chemistry. In P. L. Luisi & C. Chiarabelli (Eds.), Chemical Synthetic Biology (pp. 69–106). Chichester: Wiley.

    Chapter  Google Scholar 

  • Bensaude Vincent, B. (2013). Discipline building in synthetic biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 122–129.

    Article  Google Scholar 

  • Bensaude Vincent, B., Loeve, S., Nordmann, A., & Schwarz, A. (2011). Matters of interest: The objects of research in science and technoscience. Journal for General Philosophy of Science, 42(2), 365–383.

    Article  Google Scholar 

  • Bernard, C. (1885). Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: Librairie Germer Baillière.

    Google Scholar 

  • Bernard, C. (1984). Introduction à l’étude de la méthode expérimentale en médecine, 1865. Paris: Flammarion.

    Google Scholar 

  • Berthelot, M. (1860). La chimie organique fondée sur la synthèse. Paris: Alcan.

    Google Scholar 

  • Brooke, J. H. (1968). Wöhler’s urea and its vital force—A verdict from the chemists. Ambix, 15, 84–114.

    Article  Google Scholar 

  • Church, G., & Regis, E. (2012). Regenesis: How synthetic biology will reinvent nature and ourselves. New York: Basic Books.

    Google Scholar 

  • Deplazes, A. (2009). Piecing together a puzzle. EMBO Reports, 10(2009), 428–432.

    Article  Google Scholar 

  • Editorial. (2007). Meanings of “Life”: Synthetic biology provides a welcome antidote to chronic vitalism. Nature, 447: 1031–1032.

  • Feltz, B., Crommelinck, M., & Goujon, P. (2006). Self-organization and emergence in life sciences. Dordrecht: Springer.

    Book  Google Scholar 

  • Fox, Keller E. (2000). The century of the gene. Cambridge: Harvard University Press.

    Google Scholar 

  • Fox, Keller E. (2002). Making sense of life. Cambridge: Harvard University Press.

    Google Scholar 

  • Gibson, D. G., Glass, J. L., Lartigue, C., et al. (2010). Creation of a bacterial cell by a chemically synthesized genome. Science, 328, 52–56.

    Article  Google Scholar 

  • Guchet, X. (2009). Nature and artefact in nanotechnology. Hyle, 15(1), 5–14.

    Google Scholar 

  • Harré, R. (2003). The materiality of instruments in a metaphysics for experiments. In H. Radder (Ed.), The philosophy of experimentation (pp. 19–38). Pittsburgh: Pittsburgh University Press.

    Google Scholar 

  • Hutchinson, C. A., Gibson, D. G., & Venter, C. J. (2016). Design and synthesis of a minimal bacterial genome. Science, 351(6280), 1414.

    Google Scholar 

  • Jacob, F. (1981). Le Jeu des possibles, Paris, Fayard. Engl Tr The Possible and the Actual. New York: Pantheon Books, 1982.

  • Larrère, R. (2015). Penser et agir avec la nature. Paris: Éditions de la découverte.

    Google Scholar 

  • Latour, B. (1993). We have never been modern. Cambridge : Harvard University Press.

    Google Scholar 

  • Lehn, J. M. (2003). Une chimie supramoléculaire foisonnante. La lettre de l’Académie des sciences, 10, 12–13.

    Google Scholar 

  • Lehn, J. M. (2012). Constitutional dynamical chemistry, bridge from supramolecular chemistry to adaptive chemistry. In M. Barboiu (Ed.), Constitutional dynamical chemistry (pp. 1–32). Dordrecht: Springer.

    Google Scholar 

  • Luisi, P. L., & Chiarabelli, C. (Eds.). (2011). Chemical synthetic biology. Chichester: Wiley.

    Google Scholar 

  • Maasen, S. (2006). The assembled self of nanotechnology: The career of self-assembly as a metaphor. Paper presented at EASST Conference, Lausanne.

  • Mann, S., Webb, J., & Williams, R. (Eds.). (1989). Biomineralization: Chemical and biological perspectives. Weinheim: VCH.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.

    Google Scholar 

  • Nordmann, A. (2010). Enhancing Material Nature. In K. Lein Kjølberg & F. Wickson (Eds.), Nano meets macro: social perspectives on nanoscale sciences and technologies (pp. 283–306). Singapur: Panstanford.

  • O’Malley, M. (2009). Making knowledge in synthetic biology: Design meets kludge. Biological Theory, 4, 378–389.

    Article  Google Scholar 

  • Prigogine, I., & Stengers, I. (1984). Order out of chaos: Man’s new dialogue with nature. New York: Bantam Books.

    Google Scholar 

  • Ramberg, P. (2000). The death of vitalism and the birth of organic chemistry: Wölher’s urea synthesis and the disciplinary identity of chemistry. Ambix, 47, 170–195.

    Article  Google Scholar 

  • Riskin, J. (2015). The restless clock. A history of century-long argument over what makes living things yick. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Serres, M. (1989). Gnomon, les débuts de la géométrie grecque. In M. Serres (Ed.), Eléments d’histoire des sciences (pp. 63–99). Paris: Bordas.

    Google Scholar 

  • Simondon, G. (1952). Epistémologie de la cybernétique, unpublished paper.

  • Simondon, G. (1958). Du mode d’existence des objets techniques. Paris: Aubier-Montaigne 2nd ed. 1989.

  • Smalley, R. E. (2001). Of chemistry, love and nanobots. Scientific American, 285(3), 76–77.

    Article  Google Scholar 

  • Smalley, R. E. (2003). Discovering the fullerenes. In I. Grenthe (Ed.), Nobel lectures, chemistry 1996–2000 (pp. 89–103). Singapore: World Scientific Publishing.

    Google Scholar 

  • Stengers, I. (1985). Les généalogies de l’auto-organisation. Cahiers du CREA, 8, 7-104 (in the archives of CREA, 1 rue Descartes, 75005, Paris).

  • Venter C. (2010). Press Conference https://www.ted.com/talks/craig_venter_unveils_synthetic_life

  • Von Foerster, H. (1960). On self-organizing systems and their environments. In M. C. Yovits & S. Cameron (Eds.), self-organizing systems (pp. 31–50). London: Pergamon Press.

    Google Scholar 

  • Whitesides, G. (1995). Self-assembling materials. Scientific American, 273(3), 146–149.

    Google Scholar 

  • Whitesides, G. (2004). Taking chemistry in new directions. Angewandte Chemie International, 43, 3632–3641.

    Article  Google Scholar 

  • Whitesides, G. M., & Boncheva, M. (2002). Beyond molecules: Self-assembly of mesoscopic and macroscopic components, Proceedings of the National Academy of Science, 99, April 16, 2002, 4769–4774.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Bensaude Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, B.B. From self-organization to self-assembly: a new materialism?. HPLS 38, 1 (2016). https://doi.org/10.1007/s40656-016-0108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40656-016-0108-z

Keywords

Navigation