Skip to main content
Log in

Interpretability degrees of finitely axiomatized sequential theories

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory—like Elementary Arithmetic EA, IΣ1, or the Gödel–Bernays theory of sets and classes GB—have suprema. This partially answers a question posed by Švejdar in his paper (Commentationes Mathematicae Universitatis Carolinae 19:789–813, 1978). The partial solution of Švejdar’s problem follows from a stronger fact: the convexity of the degree structure of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory in the degree structure of the degrees of all finitely axiomatized sequential theories. In the paper we also study a related question: the comparison of structures for interpretability and derivability. In how far can derivability mimic interpretability? We provide two positive results and one negative result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buss, S.: Cut elimination in situ (2011). http://math.ucsd.edu/~sbuss/

  2. Friedman, H.: Interpretations according to Tarski. This is one of the 2007 Tarski lectures at Berkeley. The lecture is available at http://www.math.osu.edu/~friedman.8/pdf/Tarski1,052407.pdf (2007)

  3. Gerhardy, P.: Refined complexity analysis of cut elimination. In: Baaz, M., Makovsky, J. (eds.) Proceedings of the 17th International Workshop CSL 2003, LNCS, vol. 2803, pp. 212–225. Springer, Berlin (2003)

  4. Gerhardy P.: The role of quantifier alternations in cut elimination. Notre Dame J. Formal Logic 46(2), 165–171 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hájek P., Pudlák P.: Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin (1993)

    Book  Google Scholar 

  6. Hodges W.: Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42.. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  7. Krajíček J.: A note on proofs of falsehood. Archiv für Mathematische Logik und Grundlagenforschung 26(1), 169–176 (1987)

    Article  MATH  Google Scholar 

  8. Lindström P., Shavrukov V.Y.: The \({\forall\exists}\) theory of Peano Σ1 sentences. J. Math. Logic 8(2), 251–280 (2008)

    Article  MATH  Google Scholar 

  9. Mycielski, J., Pudlák, P., Stern, A. (1990) A lattice of chapters of mathematics (interpretations between theorems). Memoirs of the American Mathematical Society, vol. 426. AMS, Providence, RI

  10. Pudlák P.: Some prime elements in the lattice of interpretability types. Trans. Am. Math. Soc. 280, 255–275 (1983)

    Article  MATH  Google Scholar 

  11. Pudlák P.: Cuts, consistency statements and interpretations. J. Symb. Logic 50(2), 423–441 (1985)

    Article  MATH  Google Scholar 

  12. Shavrukov V.: Effectively inseparable boolean algebras in lattices of sentences. Arch. Math. Logic 49(1), 69–89 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Smoryński C.: Nonstandard models and related developments. In: Harrington, L., Morley, M., Scedrov, A., Simpson, S. (eds) Harvey Friedman’s Research on the Foundations of Mathematics, pp. 179–229. North Holland, Amsterdam (1985)

  14. Stern A.: Sequential theories and infinite distributivity in the lattice of chapters. J. Symb. Logic 54, 190–206 (1989)

    Article  MATH  Google Scholar 

  15. Švejdar V.: Degrees of interpretability. Commentationes Mathematicae Universitatis Carolinae 19, 789–813 (1978)

    MATH  MathSciNet  Google Scholar 

  16. Visser A.: An inside view of EXP. J. Symb. Logic 57(1), 131–165 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Visser A.: The unprovability of small inconsistency. Arch. Math. Logic 32(4), 275–298 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Visser A.: Faith & falsity: a study of faithful interpretations and false \({{\Sigma}^0_1}\) -sentences. Ann. Pure Appl. Logic 131(1–3), 103–131 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Visser A.: Pairs, sets and sequences in first order theories. Arch. Math. Logic 47(4), 299–326 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Visser A.: Cardinal arithmetic in the style of baron von Münchhausen. Rev. Symb. Logic 2(3), 570–589 (2009). doi:10.1017/S1755020309090261

    Article  MATH  MathSciNet  Google Scholar 

  21. Visser, A.: What is the right notion of sequentiality? Logic Group preprint series 288. Department of Philosophy, Utrecht University, Janskerkhof 13A, 3512 BL Utrecht (2010). http://www.phil.uu.nl/preprints/lgps/

  22. Visser, A.: Can we make the second incompleteness theorem coordinate free. J. Logic Comput. 21(4), 543–560 (2011). First published online 12 Aug 2009. doi:10.1093/logcom/exp048

    Google Scholar 

  23. Visser, A.: The arithmetics of a theory. Logic Group preprint series 293. Department of Philosophy, Utrecht University, Janskerkhof 13A, 3512 BL Utrecht (2012). http://www.phil.uu.nl/preprints/lgps/

  24. Wilkie, A.: On sentences interpretable in systems of arithmetic. In: Logic Colloquium ’84, Studies in Logic and the Foundations of Mathematics, vol. 120, pp. 329–342. Elsevier (1986). doi:10.1016/S0049-237X(08)70469-5. http://www.sciencedirect.com/science/article/B8GY3-4V40WBV-P/2/d1b5abfef30d1817f5cde479d7e8d313

  25. Wilkie A., Paris J.: On the scheme of induction for bounded arithmetic formulas. Ann. Pure Appl. Logic 35, 261–302 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Visser.

Additional information

Dedicated to Dirk van Dalen on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visser, A. Interpretability degrees of finitely axiomatized sequential theories. Arch. Math. Logic 53, 23–42 (2014). https://doi.org/10.1007/s00153-013-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-013-0353-8

Keywords

Mathematical Subject Classification (2000)

Navigation