Skip to main content
Log in

Individuals versus Individualities: A Darwinian Approach

  • Concept
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

The idea that natural selection acts on many levels—and not only at the level of organisms or individual genes—is increasingly accepted among biologists. However, it is not easy to reconcile this idea with the strictly “individualistic” conception of the evolutionary process that has always characterized Darwinian thought. Moreover, the individuality of some forms of life is a vague concept and therefore controversial. This is the case of Candidatus Magnetoglobus multicellularis, whose discovery immediately inspired the following question: Does the concept of individuality have degrees? Alternatively, how far is this structure of prokaryotic cells from deserving to be called an organism? In this article, we propose a new conceptual scheme based on an idea of individuality that is not limited to organisms and that makes sense in terms of Darwinian evolution. In this conceptual scheme, selection at levels above that of the individual organism is interpreted as the evolutionary emergence of higher-level individuality. This proposal may serve as a basis on which to construct a promising hierarchical evolutionary theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu F, Martins JL, Silveira TS, Keim CN, Lins de Barros HGP, Queiros Filho FJ, Lins U (2007) ‘Candidatus Magnetoglobus multicellularis’, a multicellular, magnetotactic prokaryote from a hypersaline environment. International Journal of Systematic and Environmental Microbiology 57: 1318–1322.

    Article  Google Scholar 

  • Abreu F, Silva KT, Martins JL, Lins U (2006) Cell viability in magnetotactic multicellular prokaryotes. International Microbiology 9: 267–272.

    Google Scholar 

  • Burt A (2000) Perspective: Sex, recombination and the efficacy of selection: Was Weismann Right? Evolution 54: 337–351.

    Google Scholar 

  • Buss LW (1987) The Evolution of Individuality. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Dawkins R (1989) The Selfish Gene, 2nd ed. Oxford, UK: Oxford University Press.

    Google Scholar 

  • García Leal A (2006) Sesgos ideológicos en las teorías sobre la evolución del sexo. PhD thesis, Universidad Autónoma de Barcelona, Barcelona, Spain.

    Google Scholar 

  • García Leal A (2008) El sexo de las lagartijas: Controversias sobre la evolución de la sexualidad. Barcelona, Spain: Tusquets Editores.

    Google Scholar 

  • Ghiselin MT (1974) A radical solution to the species problem. Systematic Zoology 23: 536–544.

    Article  Google Scholar 

  • Ghiselin MT (2009) Metaphysics and classification: Update and overview. Biological Theory 4: 253–259.

    Article  Google Scholar 

  • Grassé P-P, Noirot C (1958) Construction et architecture chez les termites champignonnistes (Macrotermitinae). Proceedings of the Tenth International Congress of Entomology, Montreal 1956, 2: 515–520.

    Google Scholar 

  • Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: A minor major transition? Annual Review of Ecology, Evolution, and Systematics 38: 621–654.

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behavior, I, II. Journal of Theoretical Biology 7: 1–52.

    Article  Google Scholar 

  • Himler AG, Caldera EJ, Baer BC, Fennández-Marin H, Mueller UG (2009) No sex in fungus-farming ants or their crops. Proceedings of the Royal Society B: Biological Sciences 276(1667): 2611–2616. DOI: 10.1098/rspb.2009.0313

    Article  Google Scholar 

  • Hull DL (1976) Are species really individuals? Systematic Zoology 25: 174–191.

    Article  Google Scholar 

  • Hull DL (1988) Interactors versus vehicles. In: The Role of Behavior in Evolution (Plotkin HC, ed), 19–50. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hull DL (1989) The Metaphysics of Evolution. Stony Brook, NY: State University of New York Press.

    Google Scholar 

  • Keim CN, Abreu F, Lins U, Lins de Barros HGP, Farina M (2004a) Cell organization and ultrastructure of a magnetotactic multicellular organism. Journal of Structural Biology 145: 254–262.

    Article  Google Scholar 

  • Keim CN, Martins JL, Abreu F, Rosado AS, Lins de Barros HGP, Borojevic R, Lins U, Farina M (2004b) Multicellular life cycle of magnetotactic prokaryotes. FEMS Letters 240: 203–208.

    Article  Google Scholar 

  • Kirk DL (1998) Volvox: A Search for the Molecular and Genetic Origins of Multicellularity and Cellular Differentiation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lurié D, Wagensberg J (1979) Non-equilibrium thermodynamics and biological growth and development. Journal of Theoretical Biology 78: 241–250.

    Article  Google Scholar 

  • Mackie GO, Pugh PR, Purcell JE (1987) Siphonophore biology. Advances in Marine Biology 24: 98–262.

    Google Scholar 

  • Margulis L (1993) Symbiosis in Cell Evolution, 2nd ed. San Francisco, CA: Freeman.

    Google Scholar 

  • Margulis L, Sagan D (1997) What Is Sex? New York: Nevraumont.

    Google Scholar 

  • Maynard Smith J (1978) The Evolution of Sex. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Reeve HK, Westneat DF, Noon WA, Sherman PW, Aquadro CF (1990) DNA “fingerprinting” reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proceedings of the National Academy of Sciences of the USA 87: 2496–2500.

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal 27: 379–656.

    Article  Google Scholar 

  • Thorne BL (1997) Evolution of eusociality in termites. Annual Review of Ecology and Systematics 28: 27–54.

    Article  Google Scholar 

  • Wagensberg J (2000) Complexity versus uncertainty: The question of staying alive. Biology and Philosophy 15: 493–508.

    Article  Google Scholar 

  • Wagensberg J (2009) Understanding form. Biological Theory 3: 325–335.

    Article  Google Scholar 

  • Weismann A (1889) The significance of sexual reproduction in the theory of natural selection. In: Essays upon Heredity and Kindred Biological Problems (Poulton EB, Schonland S, Shipley AE, eds), 251–332. Oxford: Clarendon Press.

    Chapter  Google Scholar 

  • Weismann A (1904) The Evolution Theory. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Williams GC (1966) Adaptation and Natural Selection. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Williams GC (1975) Sex and Evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Williams GC (1992) Natural Selection: Domains, Levels, and Challenges. New York: Oxford University Press.

    Google Scholar 

  • Wilson EO (1971) The Insect Societies. Cambridge, MA: Belknap Press of Harvard University Press.

    Google Scholar 

  • Wilson J (1999) Biological Individuality. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Wilson DS, Wilson EO (2007) Rethinking the theoretical foundation of sociobiology. Quarterly Review of Biology 82: 327–348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Wagensberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagensberg, J., García Leal, A. & Lins de Barros, H.G.P. Individuals versus Individualities: A Darwinian Approach. Biol Theory 5, 87–95 (2010). https://doi.org/10.1162/BIOT_a_00020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/BIOT_a_00020

Keywords

Navigation