Skip to main content
Log in

Understanding Form

  • Published:
Biological Theory Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Much research into morphogenesis focuses on discovering mechanisms and models able to generate or describe the forms we can observe in nature. These studies all provide insights, even though they do not directly touch upon what is the focus of this article: the understanding of form. To this end a conceptual scheme based on the following ideas is proposed: understanding (in science), emerging (in reality), persisting (in reality), selection (fundamental, natural, and cultural), and the relation concerning complexity (of the biota) versus uncertainty (of the environment), in particular, the relation between form and function. This article is thus a contribution to both the epistemology and the ontology of nature and, in particular, of the living world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnsley M (1988) Fractals Everywhere. New York: Academic Press.

    Google Scholar 

  • Binney J, Tremaine S (1987) Galactic Dynamics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Dennett DC (2003) Freedom Evolves. New York: Viking Press.

    Google Scholar 

  • Diderot, d’Alembert, eds (1751) Encyclopédie, ou Dictionnaire raisonné des sciences, des arts et des métiers, Vol. 1. Paris: Briasson, David, Le Breton, Durand.

    Google Scholar 

  • Feder J, Aharony A, eds (1990) Fractals in Physics. Amsterdam: North-Holland.

    Google Scholar 

  • Féjes Toth L (1961) On the Stability of a Circle Packing. Ann. Univ. Sci. Budapestinensis 3: 63–66.

    Google Scholar 

  • Fleishmann M, Tildesley D, Ball R, eds (1989) Fractals in the Natural Sciences. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Getling A (1998) Rayleigh Bénard Convection: Structures and Dynamics. New York: World Scientific.

    Book  Google Scholar 

  • Gouyet JF (1991) Fractals. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Jagla A, Rojo R (2002) Sequential fragmentation: The origin of columnar quasihexagonal pattern. Physical Review E 65: 2623–2626.

    Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Physical Review 108: 171–190.

    Article  Google Scholar 

  • Kaandorp JA (1994) Fractal Modelling: Growth and Form in Biology. New York: Springer.

    Book  Google Scholar 

  • Kepler J (1976) The Six-Cornered Snowflake (De Nive Sexangula). Oxford: Oxford University Press.

    Google Scholar 

  • Lauwerier H (1984) Les geometries fractales. Paris: Hermes.

    Google Scholar 

  • Mandelbrot B (1977) Fractals: Form, Chance, and Dimension. San Francisco: Freeman.

    Google Scholar 

  • Mandelbrot B (1982) The Fractal Geometry of Nature. San Francisco: Freeman.

    Google Scholar 

  • Pastor-Satorras R, Wagensberg J (1996) Branch distribution in diffusion-limited aggregation: A maximum entropy approach. Physica A 224: 463–479.

    Article  Google Scholar 

  • Pastor-Satorras R, Wagensberg J (1998) The maximum entropy principle and the nature of fractals. Physica A 251: 291–302.

    Article  Google Scholar 

  • Peitgen H-O, Jürgens H, Saupe D (1992) Chaos and Fractals: New Frontiers of Science. New York: Springer.

    Book  Google Scholar 

  • Peitgen H-O, Saupe D, eds (1988) The Science of Fractal Images. New York: Springer.

    Google Scholar 

  • Spinoza B (2000) Ética demostrada según el orden geométrico. Madrid, Spain: Editorial Trotta.

    Google Scholar 

  • Taube M (1985) Evolution of Matter and Energy on a Cosmic and Planetary Scale. New York: Springer.

    Book  Google Scholar 

  • Thompson, D’Arcy W. (1942) On Growth and Form, new ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wagensberg J (2000) Complexity versus uncertainty and the question of staying alive. Biology and Philosophy 15: 493–508.

    Article  Google Scholar 

  • Wagensberg J (2004) La rebeliún de las formas. Barcelona, Spain: Tusquets.

    Google Scholar 

  • Wagensberg J, Pastor-Satorras R (1991) Entropy of form and hierarchic organization. In: Maximum Entropy and Bayesian Methods (Smith CR, Erickson GJ, Neudorfer PO, eds), 141–151. Dordrecht: Kluwer.

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276: 122–126.

    Article  Google Scholar 

  • Zhabotinsky AM (1974) Self-oscillating Concentrations. Moscow: Nauka.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Wagensberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagensberg, J. Understanding Form. Biol Theory 3, 325–335 (2008). https://doi.org/10.1162/biot.2008.3.4.325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/biot.2008.3.4.325

Keywords

Navigation