Skip to main content
Log in

Quantization by parts, self-adjoint extensions, and a novel derivation of the Josephson equation in superconductivity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

There has been a lot of interest in generalizing orthodox quantum mechanics to include POV measures as observables, namely as unsharp obserrables. Such POV measures are related to symmetric operators. We have argued recently that only maximal symmetric operators should describe observables.1 This generalization to maximal symmetric operators has many physical applications. One application is in the area of quantization. We shall discuss a scheme, to he called quantization by parts,which can systematically deal with what may be called quantum circuits. As a specific application we shall present a novel derivation of the famous Josephson equation for the supercurrent through a Josephson junction in a superconducting circuit. An interesting effect emerges from our quantization scheme when applied to a superconducting Y-shape circuit configuration. We also propose an experimental test for this effect which is expected to shed light on some conceptual problems on the quantum nature of the condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Wan, R. H. Fountain, and Z. Y. Tao.J. Phys. A: Math. Gen. 28, 2379 (1995). Note that in this paper the condition: ℋ(F′φ) > ℋ() ∀φ∈Gin Definition 2 on p. 2382 should be replaced by the condition: ℋ(F′φ) ⩾ ℋ() ∀φ∈G and ℋ(F′φ) > ℋ() for some φ∈G.

    Google Scholar 

  2. J. Bardeen, L. N. Cooper, and J. R. Schreiffer.Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  3. A. Barone and G. Paterno.Physics and Applications of the Josephson Effect (Wiley, New York, 1982). pp. 2.9 10. 18. 23.

    Google Scholar 

  4. D. R. Tilley and J. Tilley.Superfluidity and Superconductivity (Adam Hilger. Bristol. 1990). p. 39.

    Google Scholar 

  5. R. P. Feynman,Statistical Mechanics (Benjamin, Reading, Massachusetts, 1972). p. 304.

    Google Scholar 

  6. R. P. Feynman,The Feynman Lectures on Physics, VolIII (Addison-Wesley, New York, 1965). Sec. 21-9.

    Google Scholar 

  7. K. K. Wan and F. E. Harrison,Phys. Lett. A 174. 1 (1993).

    Google Scholar 

  8. K. K. Wan and F. E. Harrison, 1996 preprint entitled “Macroscopic quantum systems as measuring devices: de SQUIDS and superselection rules.”

  9. Y. Srivastava and A. Widom,Phys. Rep. 148. 1 (1987).

    Google Scholar 

  10. T. P. Spiller, T. D. Clark, R. J. Prance, and A. Widom.Quantum Phenomena in Circuits at Low Temperature, in Progress in Low Temperature Physics. Vol XIII. E. D. Brewer, (North-Holland, Amsterdam, 1992).

    Google Scholar 

  11. B. D. Josephson,Phys. Lett. 1. 251 (1962).

    Google Scholar 

  12. P. Exner and P. Seba.J. Math. Phys. 28. 386 (1987).

    Google Scholar 

  13. P. Exner and P. Seba.Rep. Math. Phys. 28. 7 (1989).

    Google Scholar 

  14. P. Exner and P. Seba. “Quantum junctions and the self-adjoint extensions theory.” also P. Exner, P. Seba. and P. Stovicek, “Quantum waveguides.” both inApplications of Self-Adjoint Extensions in Quantum Physics. P. Exner and P. Seba. eds. (Springer, Berlin. 1989).

    Google Scholar 

  15. J. Blank. P. Exner. and M. Havlieek.Hilbert Space Operators in Quantum Physics (American Institute of Physics. New York. 1994). pp. 60. 471–489, 145, 149, 137, 122.

    Google Scholar 

  16. N. I. Akhiezer and I. M. Glazman.Theory of Linear Operators in Hilbert Space. Vol. 2 (Fiederick Ungar. New York. 1963). pp. 101, 97.

    Google Scholar 

  17. J. Weidman,Linear Operators in Hilbert Spaces (Springer, New York. 1980). pp. 160. 239, 240, 238, 162, 124.

    Google Scholar 

  18. R. D. Richtmyer,Principles of Advanced Mathematical Physics. Vol. 1 (Springer, New York. 1978). pp. 155, 141, 157.

    Google Scholar 

  19. G. Baym.Lectures on Quantum Mechanics (Benjamin, New York. 1969), pp. 58, 267.

    Google Scholar 

  20. A. C. Rose-Innes and E. H. Rhoderick.Introduction to Superconductivity (Pergamon, London, 1969), p. 15.

    Google Scholar 

  21. F. Mandl.Quantum Mechanics (Wiley. Chichester, 1992). Sec. 2.2 10.

    Google Scholar 

  22. M. Reed and B. Simon.Fourier Analysis. Self-Adjointness (Academic New York, 1975). pp. 144 145.

    Google Scholar 

  23. P. G. de Gennes.Phys. Lett. 5. 22 (1963).

    Google Scholar 

  24. P. G. de Gennes.Rev. Mod. Phys. 36. 225 (1964).

    Google Scholar 

  25. C. G. Kuper.An Introduction to the Theory of Superconductivity (Clarendon. Oxford, 1968). p. 141.

    Google Scholar 

  26. K. K. Wan.Can. J. Phys. 58 (1980) 976.

    Google Scholar 

  27. E. Beltrametti and G. Cassinelli.The Logic of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts. 1981).

    Google Scholar 

  28. J. Dixmier.Von Neumann Algebras (North-Holland, Amsterdam, 1981). pp. 161 1172. 179 194.

    Google Scholar 

  29. R. H. Dicke and J. P. Wittke,Introduction to Quantum Mehcanics (Addison-Wesley. Reading, Massachusetts, 1963), p. 61.

    Google Scholar 

  30. R. A. Hegstrom and F. Sols.Found. Phys. 25. 681 (1995).

    Google Scholar 

  31. R. S. Longhurst.Geometrical and Physical Optics (Longmans, London. 1963), p. 294.

    Google Scholar 

  32. H. Rauch. “Tests of quantum mechanics by Neutron interferometry.” inOpen Questions in Quantum Physics. G. Torozzi and A. van der Merwe, eds. (Reidel. Dordrecht, 1985). pp. 345 476.

    Google Scholar 

  33. A. C. Rose-Innes and E. H. Rhoderick.Introduction to Superconductivity (Pergamon, London. 1994). pp. 170 178.

    Google Scholar 

  34. N. Bohr. “Discussions with Einstein on epistemological problems in atomic physics.” inAlbert Einstein; Philosopher-Scientist. P. A. Schilpp. ed. (Open Court, Evanston. 1949). pp. 200 241.

    Google Scholar 

  35. J. A. Wheeler. “Law without Law.” inQuantum Theory of Measurement. J. A. Wheeler and W. H. Zurek. eds. (Princeton University Press. Princeton. 1983). pp. 182 213.

    Google Scholar 

  36. T. Hellmuth. A. G. Zajonc. and H. Walther. “Realization of a «delayed-choice» Mach Zehnder interferometer, inSymposium in the Foundations of Modern Physics.” P. Lahti and P. Mittelstaedt. eds. I World Scientific, Singapore. 1985). pp. 417 422.

    Google Scholar 

  37. F. Selleri and G. Tarozzi,Riv. Nuovo Cimento 4. No. 2 (1981).

  38. K. K. Wan,Found. Phys. 18. 887 (1988).

    Google Scholar 

  39. K. K. Wan and R. G. McLean.Found. Phys. 24 715 737 (1994).

    Google Scholar 

  40. K. K. Wan and F. E. Harrison.Found. Phys. 24. 831 853 (1994).

    Google Scholar 

  41. A. Widom.J. Low Temp Phys. 37. 449 466 (1979).

    Google Scholar 

  42. A. J. Leggett. “Quantum mechanics at the macroscopic level.” inThe Lesson oj Quantum Theory. J. de Boer. E. Dal. and O. Ullbeck. eds. (Elsevier. New York. 1986). pp. 395 506.

    Google Scholar 

  43. Y. Srivastava and A. Widom.Phys. Rep. 148, 1 65 (1987).

    Google Scholar 

  44. T. D. Clark. “Macroscopic quantum objects in quantum implications.” inEssays in Honour of David Bohm. B. J. Hiley and E. D. Peat. eds. (Routledge & Kegan, London. 1987). pp. 121 150.

    Google Scholar 

  45. A. Widom. “Implications of superconducting circuits for relativistic quantum electrodynamics.” inMacroscopic Quantum Phenomena. T. D. Clark. H. Prance. R. J. Prance, and T. P. Spiller, eds. (World Scientific. Singapore. 1991).

    Google Scholar 

  46. K. K. Wan.Can. J. Phys. 58. 976 (1980).

    Google Scholar 

  47. E. Beltrametti and G. Cassinelli.The Logic of Quantum Mechanics (Addison-Wesley. Reading. Massachusetts. 1981).

    Google Scholar 

  48. B. C. van Fraasscn.Quantum. Mechanics: An Empirieist View Clarendon. Oxford. 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, K.K., Fountain, R.H. Quantization by parts, self-adjoint extensions, and a novel derivation of the Josephson equation in superconductivity. Found Phys 26, 1165–1199 (1996). https://doi.org/10.1007/BF02275625

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02275625

Keywords

Navigation