Skip to main content
Log in

Classifying ℵ0-categorical theories

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Among the complete ℵ0-categorical theories with finite non-logical vocabularies, we distinguish three classes. The classification is obtained by looking at the number of bound variables needed to isolated complete types. In classI theories, all types are isolated by quantifier free formulas; in classII theories, there is a leastm, greater than zero, s.t. all types are isolated by formulas in no more thanm bound variables: and in classIII theories, for eachm there is a type which cannot be isolated inm or fewer bound variables. ClassII theories are further subclassified according to whether or not they can be extended to classI theories by the addition of finitely many new predicates. Alternative characterizations are given in terms of quantifier elimination and homogeneous models. It is shown that for each primep, the theory of infinite Abelian groups all of whose elements are of orderp is classI when formulated in functional constants, and classIII when formulated in relational constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Baldwin, Review of Mazoyer [11],Mathematical Reviews 52 # 2864 (1976).

    Google Scholar 

  2. J. Barwise,Back and forth through infinitary logic,Studies in Model Theory, M. Morley (ed.), The Mathematical Association of America, pp. 5–34.

  3. O. Y. Belegradek, Review of Schmerl [18],Mathematical Reviews 55 1382 (1978).

    Google Scholar 

  4. J. L. Bell andA. B. Slomson,Models and Ultraproducts, North-Holland, Amsterdam, 1969.

    Google Scholar 

  5. C. C. Chang,Some remarks on the model theory of infinitary languages,The Syntax and Semantics of Infinitary Logic, J. Barwise (ed.) Springer-Verlag, Berlin, 1968, pp. 36–63.

    Google Scholar 

  6. C. C. Chang andH. J. Keisler,Model Theory, Amsterdam, 1973.

  7. D. M. Clark andP. H. Krauss,Relatively homogeneous structures,Logic Colloquium 76, R. O. Grandy and J. M. E. Hyland (eds.), North-Holland, Amsterdam, 1977, pp. 255–282.

    Google Scholar 

  8. K. De Bouvere,Synonymous theories,The Theory of Models, J. Addison, L. Henkin, A. Tarski (eds.), North Holland, Amsterdam, 1965, pp. 402–406.

    Google Scholar 

  9. A. Ehrenfeucht,An application of games to the completeness problem for formalized theories,Fundamenta Mathematica 49 (1956), pp. 129–141.

    Google Scholar 

  10. R. Fraïssé,Sur quelques classification des relations basies sur des isomorphisms restraintes,Publications Scientifiques de l'Université dÁlga, Ser. A2 (1955), pp. 15–60, 273–295.

    Google Scholar 

  11. J. Mazoyer,Sur les theories catégoriques finiment axiomatisables,C.R. Acad. Sci. Paris Sér. A-B 281 (1975), pp. 403–406.

    Google Scholar 

  12. J. Paillet,Une étude sur des structures ayant une properieté de seuil pour les automorphisms elémentaries,C.R. Acad. Sci. Paris Sér. A-B 283 (1976), pp. 225–228.

    Google Scholar 

  13. J. Paillet,Structures with a property of threshold for elementary automorphisms,Journal of Symbolic Logic 42 (1977), pp. 463–464.

    Google Scholar 

  14. B. Rose andR. E. Woodrow,Ultrahomogeneous structures,Notices of the American Mathematical Society 25 (1978), A26.

    Google Scholar 

  15. B. Rose, andR. E. Woodrow,Ultrahomogeneous structures,Zeitschrift für Matematische Logik und Grundlagen der Mathematik 27 (1981), pp. 23–30.

    Google Scholar 

  16. J. C. Rosenstein,Theories which are not ℵ 0-categorical,Proceedings of the Summer School in Logic, Leeds, M. H. Löb (ed.), Springer-Verlag, Berlin, 1968, pp. 273–278.

    Google Scholar 

  17. G. E. Sacks,Saturated Model Theory, W. A. Benjamin, Reading, 1972.

    Google Scholar 

  18. J. H. Schmerl,On ℵ 0-categoricity and the theory of trees,Fundamenta Mathematica 94 (1977), pp. 112–128.

    Google Scholar 

  19. P. Scott,Logic with denumerably long formulas and finite strings of quantifiers,The Theory of Models, J. W. Addison, L. Henkin, A. Tarski (eds.), 1965, pp. 329–341.

  20. W. Szmielew,Elementary properties of Abelian groups,Fundamenta Mathematica 41 (1955), pp. 203–271.

    Google Scholar 

  21. G. Weaver,Finite partitions and their generators,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 20 (1974), pp. 255–260.

    Google Scholar 

  22. G. Weaver,Classifying ℵ 0-categorical theories I,Journal of Symbolic Logic 44 (1981), pp. 682–683.

    Google Scholar 

  23. B. I. Zil'ber,Solution of the problem of finite axiomatizability for theories that are categorical in all infinite powers (Russian)The Theory of Models and its Applications (Russian), Kazah. Gos. Univ., Alma Ata, 1980.

    Google Scholar 

  24. B. I. Zil'ber,Totally categorical theories; structural properties and non-finite axiomatizability,Model Theory of Algebra and Arithmetic, P. Pacholski, J. Wierzejewski, and A. J. Wilke (eds.), Springer-Verlag, Berlin, 1980, pp. 381–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, G. Classifying ℵ0-categorical theories. Stud Logica 47, 327–345 (1988). https://doi.org/10.1007/BF00671564

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00671564

Keywords

Navigation