Skip to main content
Log in

Illustrations of a dynamical theory of the ether

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Schrödinger and Klein-Gordon equations for free, structureless particles are derived classically from two different continuum approximations to a Boltzmann equation for the trace component of a mixture. The majority component is designated as the ether. Deviations from these continuum approximations (rarefied ether) yield deviations from the Schrödinger and Klein-Gordon equations which are shown explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Maxwell,Phil. Mag. 19, 19 (1860);20, 21 (1860), reprinted inCollected Works (Dover, New York, 1965), Vol. 1, p. 377, and inKinetic Theory I, S. G. Brush, ed. (Pergamon, Oxford, 1965), p. 148.

    Google Scholar 

  2. J. C. Maxwell,Phil. Trans. R. Soc. London 157, 49 (1867);Phil. Mag. 32, 390 (1866), reprinted inCollected Works (Dover, New York, 1965), Vol. 2, p. 26, and inKinetic Theory II, S. G. Brush, ed. (Pergamon, Oxford, 1966), p. 23.

    Google Scholar 

  3. P. Langevin,Ann. Chim. Phys. 5, 245 (1905), translated in E. W. McDaniel,Collision Phenomena in Ionized Gases (Wiley, New York, 1964), Appendix II.

    Google Scholar 

  4. H. R. Hassé,Phil. Mag. 1, 139 (1926).

    Google Scholar 

  5. G. H. Wannier,Statistical Physics (Wiley, New York, 1966), p. 457.

    Google Scholar 

  6. L. de Broglie,Comp. Rend. 183, 447 (1926).

    Google Scholar 

  7. L. de Broglie,Compt. Rend. 184, 273 (1927).

    Google Scholar 

  8. L. de Broglie,J. Phys. Radium (6)8, 225 (1927).

    Google Scholar 

  9. L. de Broglie,Comp. Rend. 234, 265 (1952).

    Google Scholar 

  10. L. de Broglie,Comp. Rend. 235, 557, 1345, 1453 (1952).

    Google Scholar 

  11. D. Bohm,Phys. Rev. 85, 166, 180 (1952).

    Google Scholar 

  12. D. Bohm,Progr. Theor. Phys. 9, 273 (1953).

    Google Scholar 

  13. D. Bohm and J. P. Vigier,Phys. Rev. 96, 208 (1954).

    Google Scholar 

  14. N. Wiener and A. Siegel,Phys. Rev. 91, 1551 (1953).

    Google Scholar 

  15. N. Wiener and A. Siegel,Nuovo Cimento Suppl. 2(4), 982 (1955).

    Google Scholar 

  16. P. Braffort and C. Tzara,Compt. Rend. 239, 157 (1954).

    Google Scholar 

  17. A. Siegel,Synthese 14, 171 (1962).

    Google Scholar 

  18. J. M. Janch and C. Piron,Helv. Phys. Acta 36, 827 (1963).

    Google Scholar 

  19. P. Braffort, M. Surdin, and A. Taroni,Compt. Rend. 261, 4339 (1965).

    Google Scholar 

  20. T. Marshal,Proc. Cambr. Phil. Soc. 61, 537 (1965).

    Google Scholar 

  21. R. C. Bownet,Can. J. Phys. 43, 619 (1965).

    Google Scholar 

  22. J. S. Bell,Rev. Mod. Phys. 38, 447 (1966).

    Google Scholar 

  23. D. Bohm and J. Bub,Rev. Mod. Phys. 38, 453 (1966).

    Google Scholar 

  24. R. Furth,Z. Physik 81, 143 (1933).

    Google Scholar 

  25. I. Fényes,Z. Physik 132, 81 (1952).

    Google Scholar 

  26. W. Weizel,Z. Physik 134, 264 (1953);135, 270 (1953);136, 582 (1954).

    Google Scholar 

  27. D. Kershaw,Phys. Rev. 136, B1850 (1964).

    Google Scholar 

  28. G. G. Comisar,Phys. Rev. 138, B1332 (1965).

    Google Scholar 

  29. E. Nelson,Phys. Rev. 150, 1079 (1966).

    Google Scholar 

  30. E. Nelson,Dynamical Theories of Brownian Motion (Princeton Univ. Press, Princeton, New Jersey, 1967).

    Google Scholar 

  31. A. F. Kracklauer,Phys. Rev. D 10, 1358 (1974).

    Google Scholar 

  32. J. von Neumann,The Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, New Jersey, 1955).

    Google Scholar 

  33. L. Boltzmann,Ber. Akad. Wiss. Vienna II 66, 275 (1872); translated in S. G. Brush,Kinetic Theory II (Pergamon, Oxford, 1966), p. 88.

    Google Scholar 

  34. J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases (North Holland, Amsterdam, 1972).

    Google Scholar 

  35. D. Burnett,Proc. London Math. Soc. 39, 385 (1935).

    Google Scholar 

  36. C. S. Wang-Chang and G. E. Uhlenbeck, inStudies in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1970), Vol. V.

    Google Scholar 

  37. T. Kihara,Rev. Mod. Phys. 25, 844 (1953).

    Google Scholar 

  38. E. A. Mason and H. W. Schamp,Ann. Phys. (N.Y.)4, 233 (1958).

    Google Scholar 

  39. H.-S. Hahn and E. A. Mason,Phys. Rev. A 7, 1407 (1973).

    Google Scholar 

  40. J. H. Whealton and E. A. Mason,Ann. Phys. (N.Y.)84, 8 (1974).

    Google Scholar 

  41. H. Grad, inHandbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1958), Vol. 12, p. 205 ff.

    Google Scholar 

  42. H. Grad,Phys. Fluids 6, 147 (1963).

    Google Scholar 

  43. H. Grad,Rarefied Gas Dynamics (Academic Press, New York, 1963), Vol. 1, p. 26.

    Google Scholar 

  44. F. B. Pidduck,Proc. London Math. Soc. 15, 89 (1915).

    Google Scholar 

  45. S. Chapman,Phil. Trans. R. Soc. 216, 279 (1916).

    Google Scholar 

  46. D. Enskog, Dissertation, Uppsala 1917, translated in S. G. Brush,Kinetic Theory III (Pergamon, Oxford, 1972), p. 125.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whealton, J.H. Illustrations of a dynamical theory of the ether. Found Phys 5, 543–553 (1975). https://doi.org/10.1007/BF00708895

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708895

Keywords

Navigation