Skip to main content
Log in

General quantum mechanical canonical point transformations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Problems related to the operator form of the generalized canonical momenta in quantum mechanics are resolved by use of the general quantum mechanical canonical point transformation method. This method can be applied to any general canonical point transformation irrespective of the relationship between the domains of the original and transformed variables. The differential representation of the original canonical momenta pi in the original coordinate space is −i \(\begin{array}{*{20}c} / \\ h \\ \end{array}\) ∂/∂x i and of the transformed canonical momentap i ′ in the transformed coordinate space is −i \(\begin{array}{*{20}c} / \\ h \\ \end{array}\) ∂/∂x i ′. Relationships are derived between the eigenvalues of the original and transformed momenta in either space. The ordering problem for general point transformations is discussed and is shown to be solved. As an example of the generality of the method, it is demonstrated on the point transformation in three dimensions from Cartesian rectilinear to spherical rectilinear coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Merzbacher,Quantum Mechanics (Wiley, New York, 1961), Chap. 15, Sec. 4.

    Google Scholar 

  2. P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford Univ. Press, London, 1958), Chap. 4, Sec. 26.

    Google Scholar 

  3. D. I. Blokhintsev,Quantum Mechanics (D. Reidel, Dordrecht, Holland, 1964), p. 517.

    Google Scholar 

  4. K. Simon,Am. J. Phys. 33, 60 (1965).

    Google Scholar 

  5. G. R. Gruber,Found. Phys. 1, 227 (1971).

    Google Scholar 

  6. G. R. Gruber,Int. J. Theoret. Phys. 6, 31 (1972).

    Google Scholar 

  7. G. R. Gruber,Am. J. Phys. 40, 1537 (1972).

    Google Scholar 

  8. G. R. Gruber,Int. J. Theoret. Phys. 7, 253 (1973).

    Google Scholar 

  9. R. W. Finkel,Found. Phys. 3, 101 (1973).

    Google Scholar 

  10. B. V. Landau,Found. Phys. 3, 499 (1973).

    Google Scholar 

  11. G. R. Gruber,Found. Phys. 4, 19 (1974).

    Google Scholar 

  12. E. Schrödinger,Ann. d. Physik 79, 745 (1926).

    Google Scholar 

  13. W. Pauli,Z. Physik 36, 336 (1926).

    Google Scholar 

  14. P. A. M. Dirac,Proc. Roy. Soc. A110, 561 (1926).

    Google Scholar 

  15. P. Jordan,Z. Physik 37, 383 (1926).

    Google Scholar 

  16. C. Eckart,Phys. Rev. 28, 711 (1926).

    Google Scholar 

  17. P. S. Epstein,Proc. Nat. Acad. Sci. 12, 634 (1926).

    Google Scholar 

  18. P. Jordan,Z. Physik 38, 513 (1926).

    Google Scholar 

  19. P. A. M. Dirac,Proc. Roy. Soc. A113, 621 (1927).

    Google Scholar 

  20. B. Podolsky,Phys. Rev. 32, 812 (1928).

    Google Scholar 

  21. A. Landé,Principles of Quantum Mechanics (Cambridge Univ. Press, London, 1937), Secs. 50, 51, 58–63.

    Google Scholar 

  22. B. S. DeWitt,Phys. Rev. 85, 653 (1952).

    Google Scholar 

  23. W. Pauli, “Die Allgemeinen Prinzipien der Wellenmechanik,” inHandbuch der Physik (Springer-Verlag, Berlin, 1956), Band 5, Ziff. 5.

    Google Scholar 

  24. B. S. DeWitt,Rev. Mod. Phys. 29, 377 (1957).

    Google Scholar 

  25. L. D. Dureau,Am. J. Phys. 33, 895 (1965).

    Google Scholar 

  26. G. Rosen,Formulation of Classical and Quantum Dynamical Theory (Academic Press, New York, 1969), Chap. 2.

    Google Scholar 

  27. F. M. Eger and E. P. Gross,Ann. Phys. (N. Y.) 24, 63 (1963).

    Google Scholar 

  28. F. M. Eger and E. P. Gross,Nuovo Cimento 34, 1225 (1964).

    Google Scholar 

  29. F. M. Eger and E. P. Gross,J. Math. Phys. 6, 891 (1965);7, 578 (1966).

    Google Scholar 

  30. D. Bohm and B. Salt,Rev. Mod. Phys. 39, 894 (1967).

    Google Scholar 

  31. M. J. Cooper,J. Math. Phys. 9, 571 (1968).

    Google Scholar 

  32. E. P. Gross, “Transformation Theory,” inMathematical Methods in Solid State and Superfluid Theory, ed. by R. C. Clark and G. H. Derrick (Plenum Press, New York, 1968).

    Google Scholar 

  33. E. P. Gross,Ann. Phys. (N. Y.) 52, 383 (1969).

    Google Scholar 

  34. N. M. Witriol,J. Math. Phys. 11, 669 (1970).

    Google Scholar 

  35. N. M. Witriol,Phys. Rev. A 1, 1775 (1970).

    Google Scholar 

  36. N. M. Witriol,J. Math. Phys. 12, 177 (1971);12, 2467 (1971).

    Google Scholar 

  37. E. P. Gross,Ann. Phys. (N.Y.) 62, 320 (1971).

    Google Scholar 

  38. S. B. Trickey, N. M. Witriol, and G. L. Morley,Solid State Comm. 11, 139 (1972).

    Google Scholar 

  39. N. M. Witriol,Int. J. Quant. Chem. VIS, 145 (1972).

  40. S. B. Trickey, N. M. Witriol, and G. L. Morley,Phys. Rev. A 7, 1662 (1973).

    Google Scholar 

  41. P. O. Löwdin, inProc. Nikko Symposium on Molecular Physics (Maruzen, Tokyo, 1954), p. 116; G. G. Hall,Proc. Phys. Soc. (Lond.) 75, 575 (1960); J. O. Hirschfelder,J. Chem. Phys. 33, 1462 (1960); S. T. Epstein and J. O. Hirschfelder,Phys. Rev. 123, 1495 (1961); J. O. Hirschfelder and C. A. Coulson,J. Chem. Phys. 36, 941 (1961); J. H. Epstein and S. T. Epstein,Am. J. Phys. 30, 266 (1962); P. D. Robinson and J. O. Hirschfelder,Phys. Rev. 129, 1391 (1963); S. T. Epstein and P. D. Robinson,Phys. Rev. 129, 1396 (1963).

    Google Scholar 

  42. H. Goldstein,Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1959), Chap. 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witriol, N.M. General quantum mechanical canonical point transformations. Found Phys 5, 591–605 (1975). https://doi.org/10.1007/BF00708431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708431

Keywords

Navigation