Skip to main content
Log in

Chaos, ineffectiveness, and the contrast between classical and quantal physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Classical and quantal physics are fundamentally different in the way that each deals with complexity. We examine both the algorithmic and the computational aspects of this difference. Any comprehensive deterministic theory must contain a certain ineffectiveness in producing long-term predictions of the future, whereas a probabilistic theory is not so handicapped. The relevance of these considerations to chaos is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Littlewood,A Mathematician's Miscellany (Methuen, London, 1953).

    Google Scholar 

  2. G. Chaitin,Algorithmic Information Theory (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  3. J. Ford, “What is chaos that we should be mindful of it?” inThe New Physics, S. Capelin and P. Davis, eds. (Cambridge University, Press, Cambridge, 1987).

    Google Scholar 

  4. J. E. Hopcroft and J. D. Ullman,Formal Languages and Their Relation to Automata (Addison-Wesley, Massachusetts, 1969), Chap. 10.

    Google Scholar 

  5. R. Rucker,Mind Tools (Houghton Mifflin, Boston, 1987).

    Google Scholar 

  6. B. O. Koopman,Proc. Natl. Acad. Sci. USA 17, 315 (1931).

    Google Scholar 

  7. P. Benioff,J. Stat. Phys. 29, 515 (1982).

    Google Scholar 

  8. R. Feynman,Optics News 11, 11 (1985); reprinted inFound. Phys. 16, 507 (1986).

    Google Scholar 

  9. D. Deutsch,Proc. R. Soc. Lond. A 400, 97 (1985).

    Google Scholar 

  10. M. Henon and C. Heiles,Astron. J. 69, 73 (1964).

    Google Scholar 

  11. Y. G. Sinai,Russ. Math. Surv. 25(2), 137 (1970).

    Google Scholar 

  12. M. V. Berry,Ann. Phys. 131, 163 (1981).

    Google Scholar 

  13. S. Wolfram,Phys. Rev. Lett. 54, 735 (1985).

    Google Scholar 

  14. E. B. Baun,Phys. Rev. Lett. 57, 2764 (1986).

    Google Scholar 

  15. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi,Science 220, 671 (1983).

    Google Scholar 

  16. M. C. Gutzwiller,Physica D 7, 341 (1983).

    Google Scholar 

  17. J. Bekenstein,Phys. Rev. D 30, 1669 (1984).

    Google Scholar 

  18. Y. Aharonov and M. Vardi,Phys. Rev. D 21, 2235 (1980).

    Google Scholar 

  19. D. Anosov,Proc. Steklov Inst. Math. 90 (1967).

  20. R. Bowen,J. Diff. Eqs. 18, 333 (1975).

    Google Scholar 

  21. W. E. Lamb, Jr., “Quantum chaos and the theory of measurement,” inChaotic Behaviro in Quantum Systems, G. Casati, ed. (Plenum, New York, 1985).

    Google Scholar 

  22. M. V. Berry and M. Tabor,Proc. R. Soc. Lond. A 356, 375 (1977).

    Google Scholar 

  23. M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros,Ann. Phys. (N.Y.) 122, 26 (1979).

    Google Scholar 

  24. I. C. Percival,J. Phys. B 6, 1229 (1973).

    Google Scholar 

  25. A. Peres,Phys. Rev. A 30, 1610 (1984).

    Google Scholar 

  26. W. E. Lamb, Jr., “Theory of quantum mechanical measurements,” preprint, 1986.

  27. C. M. Caves,Phys. Rev. D 33, 1643 (1986).

    Google Scholar 

  28. G. J. Milburn and C. A. Holmes,Phys. Rev. Lett. 56, 2237 (1986).

    Google Scholar 

  29. G. J. Milburn,Phys. Rev. A 33, 674 (1986).

    Google Scholar 

  30. A. Peres, “Quantum chaos and the measurement problem,”Proceedings 1986 Como Conference, E. R. Pike and S. Sarkar, eds. (Pkenum, New York, 1987), p. 59.

    Google Scholar 

  31. R. Landauer,Phys. Rev. Lett. (Comments)58, 2150 (1987).

    Google Scholar 

  32. J. M. Blatt,Prog. Theor. Phys. 22, 745 (1959).

    Google Scholar 

  33. H. D. Zeh,Found. Phys. 1, 69 (1970).

    Google Scholar 

  34. L. D. Landau and E. M. Lifshitz,Statistical Physics (Pergamon, London, 1958).

    Google Scholar 

  35. R. Jencel,Foundations of Classical and Quantum Statistical Mechanics (Pergamon, London, 1969).

    Google Scholar 

  36. N. S. Krylov,Works on the Foundations of Statistical Physics (Princeton University Press, Princeton, 1979).

    Google Scholar 

  37. N. G. van Kampen,Physica 20, 603 (1954).

    Google Scholar 

  38. G. Chaitin,Int. J. Theor. Phys. 21, 941 (1982); reprinted inNew Directions in the Philosophy of Mathematics, T. Tymoczko, ed. (Birkhäuser, Boston, 1986).

    Google Scholar 

  39. A. Peres and W. H. Zurek,Am. J. Phys. 50, 807 (1982).

    Google Scholar 

  40. J. Rothstein,Int. J. Theor. Phys. 21, 327 (1982).

    Google Scholar 

  41. N. G. van Kampen, “A model for quantum-mechanical measurement,”Proceedings, 1986 Como Conference, E. R. Pike and S. Sarkar, eds. (Plenum, New York, 1987), p. 215.

    Google Scholar 

  42. M. C. Gutzwiller,Physica D 5 183 (1982).

    Google Scholar 

  43. G. Casati, B. V. Chirikov, I. Guaneri, and D. L. Shepelyansky,Phys. Rev. Lett. 57, 823 (1986).

    Google Scholar 

  44. J. Ford,Nature 325, 19 (1987).

    Google Scholar 

  45. E. Joos and H. D. Zeh,Z. Phys. B 59, 223 (1985).

    Google Scholar 

  46. N. F. Mott,Proc. R. Soc. Lond, A 126, 79 (1929); reprinted inQuantum Theory of Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princton University Press, Princeton, 1982).

    Google Scholar 

  47. C. H. Woo, UCRL (Berkeley) Report 10431, 1962.

  48. H. Stein,Nous 18, 635 (1984).

    Google Scholar 

  49. J. B. Hartle, 1986 Cargese Lecture, “Gravitation in Astrophysics,” B. Carter and J. B. Hartle, eds. (Plenum, NY, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, C.H. Chaos, ineffectiveness, and the contrast between classical and quantal physics. Found Phys 19, 57–76 (1989). https://doi.org/10.1007/BF00737766

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00737766

Keywords

Navigation