Skip to main content
Log in

The unique hues and the argument from phenomenal structure

  • Published:
Philosophical Studies Aims and scope Submit manuscript

Abstract

Hardin’s (Color for philosophers: unweaving the rainbow, Hackett, Indianapolis, 1988) empirically-grounded argument for color eliminativism has defined the color realism debate for the last 30 years. By Hardin’s own estimation, phenomenal structure—the unique/binary hue distinction in particular—poses the greatest problem for color realism. Examination of relevant empirical findings shows that claims about the unique hues which play a central role in the argument from phenomenal structure should be rejected. Chiefly, contrary to widespread belief amongst philosophers and scientists, the unique hues do not play a fundamental role in determining all color appearances. Among the consequences of this result is that greater attention should be paid to certain proposals for putting the structure of phenomenal color into principled correspondence with surface reflectance properties. While color realism is not fully vindicated, it has much greater empirical plausibility than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. There are some similarities between Churchland’s claim about extra-representational structure and the view developed in this paper; viz., that the unique/binary distinction is not essential to color. However, one of the main targets of this paper is the standard understanding of the unique/binary distinction that Churchland accepts and chalks up as extra-representational structure. I am also calling into question the idea that the uniqueness of the unique hues is grounded in opponent-processing in anything like the way that Churchland has in mind.

  2. To be clear, I am not questioning that Forder et al. (2017) have found a strong neural marker of the unique hues. I am only pointing out that their discovery by itself does not support the mainstream view that the unique hues play a fundamental, organizing role in the structure of phenomenal color. As Forder et al note (ibid., p. 4), the neural signature they identify occurs as part of the P2 event-related potential (ERP) component that reflects post-perceptual, visuocognitive processes. They found no evidence of a neural marker of the unique hues in earlier, visual ERP components. Forder et al are quite clear that the marker found in the P2 component is neutral with respect to the thesis that the unique hues have a perceptual salience that is “hardwired” into the human visual system (ibid., p. 5). The authors cite several extant challenges to the hardwired perceptual salience hypothesis, including studies discussed in this paper; note that one of the co-authors of Forder et al, Jenny Bosten, is a co-author of two of the articles I draw on. They go on to propose that, with their finding in hand, further work can be done to disentangle the various factors—e.g., social, environmental, neural—that potentially shape the significance of the unique hues. The arguments of this paper are relevant to what direction that future research might take.

  3. Note also that there is no issue whatsoever for either using the unique green spectral stimulus to null the reddish component encountered at long and short wavelengths or using non-spectral unique red stimuli in other experimental settings.

  4. See also Bruce MacEvoy’s artist’s color wheel and discussion of visual complements at https://www.handprint.com/HP/WCL/color16.html.

References

  • Abramov, L., & Gordon, J. (1988). Scaling procedures for specifying color appearance. Color Research and Application, 13, 146–152.

    Article  Google Scholar 

  • Abramov, L., & Gordon, J. (1994). Color appearance: On seeing red—or yellow, or green, or blue. Annual Review of Psychology, 45, 451–485.

    Article  Google Scholar 

  • Abramov, L., & Gordon, J. (2005). Seeing unique hues. Journal of the Optical Society of the Optical Society of America A, 22, 2143–2153.

    Article  Google Scholar 

  • Arstila, V. (2017). What makes unique hues unique? Synthese. https://doi.org/10.1007/s11229-017-1313-3.

  • Averill, E. (2005). Toward a projectivist account of color. Journal of Philosophy, 102, 217–234.

    Article  Google Scholar 

  • Bosten, J., & Boehm, A. (2014). Empirical evidence for unique hues? Journal of the Optical Society of America A, 31, A385–A393.

    Article  Google Scholar 

  • Bosten, J., & Lawrence-Owen, A. (2014). No difference in variability of unique hue selections and binary hue selections. Journal of the Optical Society of America A, 31, A357–A364.

    Article  Google Scholar 

  • Broackes, J. (1997). Could we take lime, purple, orange, and teal as unique hues? Behavioral and Brain Sciences, 20, 183–184.

    Article  Google Scholar 

  • Broackes, J. (2011). Where do the unique hues come from? Review of Philosophy and Psychology, 2, 601–608.

    Article  Google Scholar 

  • Burns, S., Elsner, A., Pokorny, J., & Smith, V. (1984). The Abney effect: Chromaticity coordinates of unique and other constant hues. Vision Research, 24, 479–489.

    Article  Google Scholar 

  • Byrne, A., & Hilbert, D. (2003a). Color realism and color science. Behavioral and Brain Sciences, 26, 3–21.

    Article  Google Scholar 

  • Byrne, A., & Hilbert, D. (2003b). Color realism redux. Behavioral and Brain Sciences, 26, 52–63.

    Article  Google Scholar 

  • Chiao, C., Cronin, T., & Osorio, D. (2000). Color signals in natural scenes: Characteristics of reflectance spectra and effects of natural illuminants. Journal of the Optical Society of America A, 17, 218–224.

    Article  Google Scholar 

  • Churchland, P. M. (2007). On the reality (and diversity) of objective colors: How color-qualia space is a map of reflectance-profile space. Philosophy of Science, 74, 119–149.

    Article  Google Scholar 

  • Conway, B., & Stoughton, C. (2009). Response: Towards a neural representation for unique hues. Current Biology, 19, R442–R443.

    Article  Google Scholar 

  • Conway, B., & Tsao, D. (2009). Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. Proceedings of the National Academy of Sciences, 42, 18034–18039.

    Article  Google Scholar 

  • Cook, R., Kay, P., & Regier, T. (2005). The world color survey database: History and use. In H. Cohen & C. Lefebvre (Eds.), Handbook of categorisation in the cognitive sciences. London: Elsevier.

    Google Scholar 

  • Craven, B., & Foster, D. (1992). An operational approach to colour constancy. Vision Research, 32, 1359–1366.

    Article  Google Scholar 

  • Crone, R. (1999). A history of color: The evolution of theories of light and color. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • De Valois, R., Abramov, I., & Jacobs, G. (1964). Analysis of response patterns of LGN cells. Journal of the Optical Society of America, 56, 966–977.

    Article  Google Scholar 

  • Dimmick, F., & Hubbard, M. (1939a). The spectral location of psychologically unique yellow, green, and blue. American Journal of Psychology, 52, 242–254.

    Article  Google Scholar 

  • Dimmick, F., & Hubbard, M. (1939b). The spectral components of psychologically unique red. American Journal of Psychology, 52, 348–353.

    Article  Google Scholar 

  • Forder, L., Bosten, J., He, X., & Franklin, A. (2017). A neural signature of the unique hues. Scientific Reports, 7, 1–8.

    Article  Google Scholar 

  • Hardin, C. L. (1988). Color for philosophers: Unweaving the rainbow. Indianapolis: Hackett.

    Google Scholar 

  • Hardin, C. L. (1992). The virtues of illusion. Philosophical Studies, 68, 371–382.

    Article  Google Scholar 

  • Hardin, C. L. (2003). A spectral reflectance doth not a color make. Journal of Philosophy, 100, 191–202.

    Article  Google Scholar 

  • Hardin, C. L. (2005). Explaining basic color categories. Cross-Cultural Research: The Journal of Comparative Social Science, 39, 72–87.

    Article  Google Scholar 

  • Hering, E. (1920/1964). Outlines of a theory of the light sense. Cambridge, MA: Harvard University Press.

  • Hurvich, L. (1981). Color vision. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Hurvich, L., & Jameson, D. (1957). An opponent-process theory of color vision. Psychological Review, 64, 384–404.

    Article  Google Scholar 

  • Indow, Y. (1987). Psychologically unique hues in aperture and surface colors. Die Farbe, 34, 253–260.

    Google Scholar 

  • Indow, Y. (1988). Multidimensional studies of Munsell color solid. Psychological Review, 95, 456–470.

    Article  Google Scholar 

  • Indow, Y. (1999). Predictions based on Munsell notation. I. Perceptual color differences. Color Research and Application, 24, 10–18.

    Article  Google Scholar 

  • Isaac, I. (2014). Structural realism for secondary qualities. Erkenntnis, 79, 481–510.

    Article  Google Scholar 

  • Jakab, Z., & McLaughlin, B. (2003). Why not color physicalism without color absolutism? Behavioral and Brain Sciences, 26, 34–35.

    Article  Google Scholar 

  • Jameson, K. (2010). Where in the world color survey is the support for the Hering primaries as the basis for color categorization? In J. Cohen & M. Matthen (Eds.), Color ontology and color science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jameson, K., & D’Andrade, R. (1997). It’s not really red, green, yellow, blue: An inquiry into perceptual color space. In C. Hardin & L. Maffi (Eds.), Color categories in thought and language. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jameson, D., & Hurvich, L. (1955). Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation. Journal of the Optical Society of America, 45, 546–552.

    Article  Google Scholar 

  • Jameson, D., & Hurvich, L. (1959). Perceived color and its dependence on focal, surrounding, and preceding stimulus variables. Journal of the Optical Society of America, 49, 890–898.

    Article  Google Scholar 

  • Judd, D. (1951). Basic correlates of the visual stimulus. In S. Stevens (Ed.), Handbook of experimental psychology. New York: John Wiley & Sons.

    Google Scholar 

  • Koenderink, J. (2010). Color for the Sciences. Cambridge, MA: MIT Press.

    Google Scholar 

  • Komban, S., Alonso, J.-M., & Zaidi, Q. (2011). Darks are processed faster than lights. Journal of Neuroscience, 31, 8654–8658.

    Article  Google Scholar 

  • Kuehni, R. (2004). Variability in unique hue selection: A surprising phenomenon. Color Research and Application, 29, 158–162.

    Article  Google Scholar 

  • Kuehni, R. (2005). Focal color variability and unique hue stimulus variability”. Journal of Cognition and Culture, 5, 409–426.

    Article  Google Scholar 

  • Kuehni, R. (2013). Color: An introduction to practice and principles. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Kuehni, R., & Schwarz, A. (2008). Color ordered: A survey of color order systems from antiquity to the present. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Ladd-Franklin, C. (1929/1973). Colour and colour theories. New York: Arno Press.

  • Logvinenko, A. (2012). A theory of unique hues and colour categories in the human colour vision. Color Research and Application, 37, 109–116.

    Article  Google Scholar 

  • Logvinenko, A., & Beattie, L. (2011). Partial hue-matching. Journal of Vision, 11, 1–16.

    Article  Google Scholar 

  • MacLeod, D. (2010). Into the neural maze. In J. Cohen & M. Matthen (Eds.), Color ontology and color science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Malkoc, G., Kay, P., & Webster, M. (2005). Variations in normal color vision. IV. Binary hues and hue scaling. Journal of the Optical Society of America A, 22, 2154–2168.

    Article  Google Scholar 

  • Maloney, L. (2003). Surface color perception in constrained environments. In R. Mausfeld & D. Heyer (Eds.), Colour perception: Mind and the physical world. London: Oxford University Press.

    Google Scholar 

  • Matthen, M. (2005). Seeing, doing, and knowing. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Mollon, J. (2009). A neural basis for unique hues? Current Biology, 19, R441–R442.

    Article  Google Scholar 

  • Munsell Color Company. (1976). Munsell book of color: Matte finish collection. Baltimore: Munsell.

    Google Scholar 

  • Nascimento, S., Foster, D., & Amano, K. (2005). Psychophysical estimates of the number of spectral reflectance basis functions needed to reproduce natural scenes. Journal of the Optical Society of America A, 22, 1017–1022.

    Article  Google Scholar 

  • Ocelak, R. (2014). The myth of unique hues. Topoi, 34, 513–522.

    Article  Google Scholar 

  • Oxtoby, E., & Foster, D. (2005). Perceptual limits on low-dimensional models of Munsell reflectance spectra. Perception, 34, 961–966.

    Article  Google Scholar 

  • Palmer, S. (1999). Vision science: Photons to phenomenology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Regier, T., Kay, P., & Cook, R. (2005). Focal colors are universal after all. Proceedings of the National Academy of Science, 102, 8386–8391.

    Article  Google Scholar 

  • Romney, A. K. (2008). Relating reflectance spectra space to Munsell color appearance space. Journal of the Optical Society of America A, 25, 658–666.

    Article  Google Scholar 

  • Saunders, B., & van Brakel, J. (1997). Are there nontrivial constraints on colour categorization? Behavioral and Brain Sciences, 20, 167–179.

    Article  Google Scholar 

  • Stoughton, C., & Conway, B. (2008). Neural basis for unique hues. Current Biology, 18, R698–R699.

    Article  Google Scholar 

  • Thompson, E. (1995). Colour vision. New York: Routledge.

    Book  Google Scholar 

  • Valberg, A. (2001). Unique hues: An old problem for a new generation. Vision Research, 41, 1645–1657.

    Article  Google Scholar 

  • Wandell, B. (1995). Foundations of vision. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Webster, M. E., Miyahara, G. Malkoc, & Raker, V. (2000). Variations in normal color vision. II. Unique hues. Journal of the Optical Society of America A, 17, 1545–1555.

    Article  Google Scholar 

  • Wool, L., Komban, S., Kremkow, J., Jansen, M., Li, X., Alonso, J.-M., et al. (2015). Salience of unique hues and implications for color theory. Journal of Vision, 15, 1–11.

    Article  Google Scholar 

  • Wright, W. (2010). Perception, color, and realism. Erkenntnis, 73, 19–40.

    Article  Google Scholar 

  • Wright, W. (2011). More on the origin of the hues: A reply to Broackes. Review of Philosophy and Psychology, 2, 629–641.

    Article  Google Scholar 

  • Wright, W. (forthcoming). Eliminativism. In D. Brown & F. Macpherson (eds.) The Routledge handbook of philosophy of colour. London: Routledge.

  • Wyszecki, G., & Stiles, W. S. (1982). Color science: Concepts and methods, quantitative data and formulae. New York: John Wiley & Sons.

    Google Scholar 

Download references

Acknowledgements

I am grateful to two anonymous referees of this journal for their helpful comments on an earlier version of this paper. I would also like to thank Kimberly Jameson and A. Kimball Romney for discussions that greatly aided my thinking on the issues addressed herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Wright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, W. The unique hues and the argument from phenomenal structure. Philos Stud 176, 1513–1533 (2019). https://doi.org/10.1007/s11098-018-1076-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11098-018-1076-9

Keywords

Navigation