Skip to main content
Log in

Correspondence Theory for Modal Fairtlough–Mendler Semantics of Intuitionistic Modal Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We study the correspondence theory of intuitionistic modal logic in modal Fairtlough–Mendler semantics (modal FM semantics) (Fairtlough and Mendler in Inf Comput 137(1):1–33, 1997), which is the intuitionistic modal version of possibility semantics (Holliday in UC Berkeley working paper in logic and the methodology of science, 2022. http://escholarship.org/uc/item/881757qn). We identify the fragment of inductive formulas (Goranko and Vakarelov in Ann Pure Appl Logic 141(1–2):180–217, 2006) in this language and give the algorithm \(\textsf{ALBA}\) (Conradie and Palmigiano in Ann Pure Appl Logic 163(3):338–376, 2012) in this semantic setting. There are two major features in the paper: one is that in the expanded modal language, the nominal variables, which are interpreted as atoms in perfect Boolean algebras, complete join-prime elements in perfect distributive lattices and complete join-irreducible elements in perfect lattices, are interpreted as the refined regular open closures of singletons in the present setting, similar to the possibility semantics for classical normal modal logic (Zhao in J Logic Comput 31(2):523–572, 2021); the other feature is that we do not use conominals or diamond, which restricts the fragment of inductive formulas significantly. We prove the soundness of \(\textsf{ALBA}\) with respect to modal FM-frames and show that \(\textsf{ALBA}\) succeeds on inductive formulas, similar to existing settings like (Conradie and Palmigiano in Ann Pure Appl Logic 163(3):338–376, 2012; Zhao 2021, in: Cia-battoni, Pimentel, Queiroz (eds) Logic, language, information, and computation, Springer International Publishing, Cham, 2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alechina, N., M. Mendler, V. de Paiva, and E. Ritter, Categorical and kripke semantics for constructive s4 modal logic, in L. Fribourg, (eds.), Computer Science Logic, Springer, Berlin Heidelberg, 2001, pp. 292–307

    Chapter  Google Scholar 

  2. Beth, E., Semantic construction of intuitionistic logic, Mededelingen der Koninklijke Nederlandse Akademie van Wetenschappen 19:357–388, 1956.

    Google Scholar 

  3. Bezhanishvili, G., and W. H. Holliday, Locales, nuclei, and Dragalin frames, Advances in Modal Logic 11:177–196, 2016.

    Google Scholar 

  4. Bezhanishvili, G., and W. H. Holliday, A semantic hierarchy for intuitionistic logic, Indagationes Mathematicae 30(3):403–469, 2019.

    Article  Google Scholar 

  5. Bezhanishvili, N., and W. H. Holliday, Choice-free stone duality, Journal of Symbolic Logic 85(1):109–148, 2020.

    Article  Google Scholar 

  6. Blackburn, P., J. F. van Benthem, and F. Wolter, Handbook of Modal Logic, vol. 3. Elsevier, 2006.

  7. Conradie, W., S. Ghilardi, and A. Palmigiano, Unified correspondence, in A. Baltag and S. Smets, (eds.), Johan van Benthem on Logic and Information Dynamics, vol. 5 of Outstanding Contributions to Logic, Springer International Publishing, 2014, pp. 933–975

  8. Conradie, W., and A. Palmigiano, Algorithmic correspondence and canonicity for distributive modal logic, Annals of Pure and Applied Logic 163(3):338–376, 2012.

    Article  Google Scholar 

  9. Conradie, W., and A. Palmigiano, Constructive canonicity of inductive inequalities, Logical Methods in Computer Science16(3), 2020.

  10. Davey, B., and H. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002.

  11. Ding, Y., and W. H. Holliday, Another problem in possible world semantics, in N. Olivetti, R. Verbrugge, S. Negri, and G. Sandu, (eds.), 13th Conference on Advances in Modal Logic, AiML 2020, Helsinki, Finland, August 24–28, 2020, College Publications, 2020, pp. 149–168.

  12. Dragalin, A. G., Matematicheskii Intuitsionizm: Vvedenie v Teoriyu Dokazatelstv. Matematicheskaya Logika i Osnovaniya Matematiki, Nauka, Moscow, 1979.

  13. Dragalin, A. G., Mathematical intuitionism: introduction to proof theory, vol. 67 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1988.

  14. Fairtlough, M., and M. Mendler, Propositional lax logic, Information and Computation 137(1):1–33, 1997.

    Article  Google Scholar 

  15. Georgiev, D., An implementation of the algorithm SQEMA for computing first-order correspondences of modal formulas, Master’s thesis, Sofia University, Faculty of mathematics and computer science, 2006.

  16. Goranko, V., and D. Vakarelov, Elementary canonical formulae: Extending Sahlqvist’s theorem, Annals of Pure and Applied Logic 141(1-2):180–217, 2006.

    Article  Google Scholar 

  17. Harrison-Trainor, M., Worldizations of possibility models, UC Berkeley Working Paper in Logic and the Methodology of Science, 2016. http://escholarship.org/uc/item/881757qn

  18. Harrison-Trainor, M., First-order possibility models and finitary completeness proofs, The Review of Symbolic Logic 12(4):637–662, 2019.

    Article  Google Scholar 

  19. Holliday, W. H., Partiality and adjointness in modal logic, Advances in Modal Logic 10:313–332, 2014.

    Google Scholar 

  20. Holliday, W. H., Possibility semantics. Selected Topics from Contemporary Logics. College Publications, 2021.

  21. Holliday, W. H., Possibility frames and forcing for modal logic. UC Berkeley Working Paper in Logic and the Methodology of Science, June 2016. http://escholarship.org/uc/item/9v11r0dq

  22. Humberstone, I., From worlds to possibilities, Journal of Philosophical Logic 10(3):313–339, 1981.

    Article  Google Scholar 

  23. Johnstone, P., Stone spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1982.

  24. Macnab, D. S., An algebraic study of modal operators on Heyting algebras with applications to topology and sheafification, PhD thesis, University of Aberdeen, 1976.

  25. Macnab, D. S., Modal operators on Heyting algebras. Algebra Universalis 12:5–29, 1981.

    Article  Google Scholar 

  26. Massas, G., Possibility spaces, Q-completions and Rasiowa-Sikorski lemmas for non-classical logics, Master’s thesis, University of Amsterdam, 2016.

  27. Massas, G., Possibility semantics for IPC, draft, 2018.

  28. Massas, G., B-frame duality, UC Berkeley Working Paper in Logic and the Methodology of Science, 2022. https://escholarship.org/uc/item/78v634pc

  29. Mendler, M., and S. Scheele, Cut-free gentzen calculus for multimodal ck, Information and Computation 209(12):1465–1490, 2011.

  30. Montague, R., Universal grammar, Theoria 36(3):373–398, 1970.

    Article  Google Scholar 

  31. Pacuit, E., Neighborhood semantics for modal logic. Short Textbooks in Logic, Springer, Dordrecht, 2017.

    Book  Google Scholar 

  32. Palmigiano, A., S. Sourabh, and Z. Zhao. Sahlqvist theory for impossible worlds, Journal of Logic and Computation 27(3):775–816, 2017.

    Google Scholar 

  33. Scott, D., Advice on Modal Logic, in K. Lambert, (eds.), Philosophical Problems in Logic, vol. 29 of Synthese Library, Springer, Dordrecht, 1970, pp. 143–173.

  34. Simpson, A., The Proof Theory and Semantics of Intuitionistic Modal Logic, PhD thesis, University of Edinburgh, 1994.

  35. van Benthem, J., N. Bezhanishvili, and W. H. Holliday, A bimodal perspective on possibility semantics, Journal of Logic and Computation 27(5):1353–1389, 2017.

    Google Scholar 

  36. Yamamoto, K., Modal correspondence theory for possibility semantics, Journal of Logic and Computation 27(8):2411–2430, 2016.

    Article  Google Scholar 

  37. Zhao, Z., Algorithmic correspondence and canonicity for possibility semantics, Journal of Logic and Computation 31(2):523–572, 02 2021.

  38. Zhao, Z., Correspondence theory for generalized modal algebras. in A. Ciabattoni, E. Pimentel, and R. J. G. B. de Queiroz, (eds.), Logic, Language, Information, and Computation, Springer International Publishing, Cham, 2022, pp. 53–69.

    Google Scholar 

Download references

Acknowledgements

The research of the author is supported by the Taishan Young Scholars Program of the Government of Shandong Province, China (No.tsqn201909151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Heinrich Wansing; Received October 4, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z. Correspondence Theory for Modal Fairtlough–Mendler Semantics of Intuitionistic Modal Logic. Stud Logica 111, 1057–1082 (2023). https://doi.org/10.1007/s11225-023-10064-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-023-10064-3

Keywords

Navigation