Sarcasm Detection in Headline News using Machine and Deep Learning Algorithms

Abstract

Abstract: Sarcasm is commonly used in news and detecting sarcasm in headline news is challenging for humans and thus for computers. The media regularly seem to engage sarcasm in their news headline to get the attention of people. However, people find it tough to detect the sarcasm in the headline news, hence receiving a mistaken idea about that specific news and additionally spreading it to their friends, colleagues, etc. Consequently, an intelligent system that is able to distinguish between can sarcasm none sarcasm automatically is very important. The aim of the study is to build a sarcasm model that detect headline news using machine and deep learning and attempt to understand how a computer learns the patterns of sarcasm. The dataset used in this study was collected from Kaggle depository. We examined 21 algorithms of machine learning and one deep learning algorithm for detecting sarcasm in headline news. The evaluation metric used in this study are Accuracy, F1-measure, Recall, Precision, and Time needed for training and evaluation. The deep learning model achieved accuracy (95.27%), recall (96.62%), precision (94.15%), F1-score (95.37%) and time needed to train the mode (400 seconds), with loss of around 0.3398. However, the algorithm of machine learning that achieved the highest F1-Score is Passive Aggressive Classifier. It was the top classier for sarcasm detection among the machine learning algorithms with accuracy (95.50%), recall (96.09 %), precision (94.30%), F1-score (95.19%) and time needed to train the mode (0.31 seconds).

Download options

PhilArchive

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2022-04-29

Downloads
123 (#97,822)

6 months
123 (#4,866)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Samy S. Abu-Naser
North Dakota State University (PhD)

Citations of this work

No citations found.

Add more citations

Similar books and articles

Sarcasm Detection in Headline News Using Machine and Deep Learning Algorithms.Alaa Barhoom, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):66-73.
Diagnosis of Pneumonia Using Deep Learning.Alaa M. A. Barhoom & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):48-68.
Classification of Real and Fake Human Faces Using Deep Learning.Fatima Maher Salman & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):1-14.
Detection of Brain Tumor Using Deep Learning.Hamza Rafiq Almadhoun & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):29-47.
Diagnosis of Blood Cells Using Deep Learning.Ahmed J. Khalil & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):69-84.
Fraudulent Financial Transactions Detection Using Machine Learning.Mosa M. M. Megdad, Samy S. Abu-Naser & Bassem S. Abu-Nasser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):30-39.