Chaos and randomness: An equivalence proof of a generalized version of the Shannon entropy and the kolmogorov–sinai entropy for Hamiltonian dynamical systems

Chaos is often explained in terms of random behaviour; and having positive Kolmogorov–Sinai entropy (KSE) is taken to be indicative of randomness. Although seemly plausible, the association of positive KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. A common way of justifying this use of the KSE is to draw parallels between the KSE and ShannonÕs information theoretic entropy. However, as it stands this no more than a heuristic point, because no rigorous connection between the KSE and ShannonÕs entropy has been established yet. This paper fills this gap by proving that the KSE of a Hamiltonian dynamical system is equivalent to a generalized version of ShannonÕs information theoretic entropy under certain plausible assumptions. Ó 2005 Elsevier Ltd. All rights reserved.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,674
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

51 ( #94,471 of 1,903,042 )

Recent downloads (6 months)

6 ( #144,817 of 1,903,042 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.