The inevitability of logical strength: Strict reverse mathematics

Abstract
An extreme kind of logic skeptic claims that "the present formal systems used for the foundations of mathematics are artificially strong, thereby causing unnecessary headaches such as the Gödel incompleteness phenomena". The skeptic continues by claiming that "logician's systems always contain overly general assertions, and/or assertions about overly general notions, that are not used in any significant way in normal mathematics. For example, induction for all statements, or even all statements of certain restricted forms, is far too general - mathematicians only use induction for natural statements that actually arise. If logicians would tailor their formal systems to conform to the naturalness of normal mathematics, then various logical difficulties would disappear, and the story of the foundations of mathematics would look radically different than it does today. In particular, it should be possible to give a convincing model of actual mathematical practice that can be proved to be free of contradiction using methods that lie within what Hilbert had in mind in connection with his program”. Here we present some specific results in the direction of refuting this point of view, and introduce the Strict Reverse Mathematics (SRM) program.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 29,492
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index
2009-01-28

Total downloads
365 ( #7,707 of 2,180,702 )

Recent downloads (6 months)
1 ( #301,383 of 2,180,702 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature


Discussion
Order:
There  are no threads in this forum
Nothing in this forum yet.

Other forums