Microfluidic approaches to synchrotron radiation-based fourier transform infrared spectral microscopy of living biosystems

Abstract

© 2016 Bentham Science Publishers.A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,612

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2017-06-12

Downloads
5 (#1,559,732)

6 months
5 (#838,466)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Lyurong Chen
Skidmore College
Lu Chen
Koc University

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references