Combinatorial and recursive aspects of the automorphism group of the countable atomless Boolean algebra

Journal of Symbolic Logic 51 (2):292-301 (1986)
Given an admissible indexing φ of the countable atomless Boolean algebra B, an automorphism F of B is said to be recursively presented (relative to φ) if there exists a recursive function $p \in \operatorname{Sym}(\omega)$ such that F ⚬ φ = φ ⚬ p. Our key result on recursiveness: Both the subset of $\operatorname{Aut}(\mathscr{B})$ consisting of all those automorphisms which are recursively presented relative to some indexing, and its complement, the set of all "totally nonrecursive" automorphisms, are uncountable. This arises as a consequence of the following combinatorial investigations: (1) A comparison of the cycle structures of f and f̄, where f is a permutation of some free basis of B and f̄ is the automorphism of B induced by f. (2) An explicit description of the permutations of ω whose conjugacy classes in $\operatorname{Sym}(\omega)$ are (a) uncountable, (b) countably infinite, and (c) finite
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2274052
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,674
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

15 ( #295,204 of 1,903,046 )

Recent downloads (6 months)

1 ( #446,009 of 1,903,046 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.