Topological separation principles and logical theories

Synthese 125 (1-2):169 - 178 (2000)
This paper is dedicated to Newton da Costa, who,among his many achievements, was the first toaim at dualising intuitionism in order to produce paraconsistent logics,the C-systems. This paper similarly dualises intuitionism to aparaconsistent logic, but the dual is a different logic, namely closed setlogic. We study the interaction between the properties of topologicalspaces, particularly separation properties, and logical theories on thosespaces. The paper begins with a brief survey of what is known about therelation between topology and modal logic, intuitionist logic and paraconsistentlogic in respect of the incompleteness and inconsistency of theories.Necessary and sufficient conditions which relate the T 1-property to theproperties of logical theories, are obtained. The result is then extendedto Hausdorff and Normal spaces. In the final section these methods areused to vary the modelling conditions for identity.
Keywords Philosophy   Philosophy   Epistemology   Logic   Metaphysics   Philosophy of Language
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,479
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

31 ( #155,142 of 1,925,592 )

Recent downloads (6 months)

16 ( #39,777 of 1,925,592 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.