Harmonising Natural Deduction

Synthese 163 (2):187 - 198 (2008)
Prawitz proved a theorem, formalising 'harmony' in Natural Deduction systems, which showed that, corresponding to any deduction there is one to the same effect but in which no formula occurrence is both the consequence of an application of an introduction rule and major premise of an application of the related elimination rule. As Gentzen ordered the rules, certain rules in Classical Logic had to be excepted, but if we see the appropriate rules instead as rules for Contradiction, then we can extend the theorem to the classical case. Properly arranged there is a thoroughgoing 'harmony', in the classical rules. Indeed, as we shall see, they are, all together, far more 'harmonious' in the general sense than has been commonly observed. As this paper will show, the appearance of disharmony has only arisen because of the illogical way in which natural deduction rules for Classical Logic have been presented
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,463
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

57 ( #85,722 of 1,925,542 )

Recent downloads (6 months)

9 ( #96,508 of 1,925,542 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.