Random reals and possibly infinite computations Part I: Randomness in ∅'

Journal of Symbolic Logic 70 (3):891-913 (2005)
Abstract
Using possibly infinite computations on universal monotone Turing machines, we prove Martin-Löf randomness in ∅' of the probability that the output be in some set
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2178/jsl/1122038919
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,300
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA
Calibrating Randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.

Add more citations

Similar books and articles
Kolmogorov Complexity for Possibly Infinite Computations.Verónica Becher & Santiago Figueira - 2005 - Journal of Logic, Language and Information 14 (2):133-148.
Schnorr Randomness.Rodney G. Downey & Evan J. Griffiths - 2004 - Journal of Symbolic Logic 69 (2):533 - 554.
Every 2-Random Real is Kolmogorov Random.Joseph S. Miller - 2004 - Journal of Symbolic Logic 69 (3):907-913.
Relative Randomness and Cardinality.George Barmpalias - 2010 - Notre Dame Journal of Formal Logic 51 (2):195-205.
Computational Randomness and Lowness.Sebastiaan A. Terwijn & Domenico Zambella - 2001 - Journal of Symbolic Logic 66 (3):1199-1205.
Lowness and $\Pi _{2}^{0}$ Nullsets.Rod Downey, Andre Nies, Rebecca Weber & Liang Yu - 2006 - Journal of Symbolic Logic 71 (3):1044 - 1052.
Relative Randomness and Real Closed Fields.Alexander Raichev - 2005 - Journal of Symbolic Logic 70 (1):319 - 330.
Subclasses of the Weakly Random Reals.Johanna N. Y. Franklin - 2010 - Notre Dame Journal of Formal Logic 51 (4):417-426.
Added to PP index
2010-08-24

Total downloads
22 ( #233,525 of 2,193,096 )

Recent downloads (6 months)
1 ( #290,277 of 2,193,096 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature