Two-photon laser scanning microscopy of epithelial cell-modulated collagen density in engineered human lung tissue

Abstract

Tissue remodeling is a complex process that can occur in response to a wound or injury. In lung tissue, abnormal remodeling can lead to permanent structural changes that are characteristic of important lung diseases such as interstitial pulmonary fibrosis and bronchial asthma. Fibroblast-mediated contraction of three-dimensional collagen gels is considered an in vitro model of tissue contraction and remodeling, and the epithelium is one factor thought to modulate this process. We studied the effects of epithelium on collagen density and contraction using two-photon laser scanning microscopy. TPLSM was used to image autofluorescence of collagen fibers in an engineered tissue model of the human respiratory mucosa-a three-dimensional co-culture of human lung fibroblasts, denatured type I collagen, and a monolayer of human alveolar epithelial cell line or human bronchial epithelial cell line. Tissues were imaged at days 1, 8, and 15 at 10 depths within the tissue. Gel contraction was measured concurrently with TPLSM imaging. Image analysis shows that gels without an epithelium had the fastest rate of decay of fluorescent signal, corresponding to highest collagen density. Results of the gel contraction assay show that gels without an epithelium also had the highest degree of contraction. We conclude that epithelial cells modulate collagen density and contraction of engineered human lung tissue, and TPLSM is an effective tool to investigate this phenomenon.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,127

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2017-04-22

Downloads
1 (#1,913,683)

6 months
1 (#1,516,603)

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Author Profiles

Wu Wu
Beijing Normal University

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references