The lattice of modal logics: An algebraic investigation

Journal of Symbolic Logic 45 (2):221-236 (1980)

Abstract

Modal logics are studied in their algebraic disguise of varieties of so-called modal algebras. This enables us to apply strong results of a universal algebraic nature, notably those obtained by B. Jonsson. It is shown that the degree of incompleteness with respect to Kripke semantics of any modal logic containing the axiom □ p → p or containing an axiom of the form $\square^mp \leftrightarrow\square^{m + 1}p$ for some natural number m is 2 ℵ 0 . Furthermore, we show that there exists an immediate predecessor of classical logic (axiomatized by $p \leftrightarrow \square p$ ) which is not characterized by any finite algebra. The existence of modal logics having 2 ℵ 0 immediate predecessors is established. In contrast with these results we prove that the lattice of extensions of S4 behaves much better: a logic extending S4 is characterized by a finite algebra iff it has finitely many extensions and any such logic has only finitely many immediate predecessors, all of which are characterized by a finite algebra

Download options

PhilArchive



    Upload a copy of this work     Papers currently archived: 72,694

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
46 (#250,277)

6 months
1 (#388,319)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Varieties of Complex Algebras.Robert Goldblatt - 1989 - Annals of Pure and Applied Logic 44 (3):173-242.
Shifting Priorities: Simple Representations for Twenty-Seven Iterated Theory Change Operators.Hans Rott - 2006 - In David Makinson, Jacek Malinowski & Heinrich Wansing (eds.), Towards Mathematical Philosophy. Dordrecht: Springer. pp. 269–296.
Algebraic Aspects of Deduction Theorems.Janusz Czelakowski - 1985 - Studia Logica 44 (4):369 - 387.

View all 25 citations / Add more citations