Annals of Pure and Applied Logic 125 (1-3):101-118 (2004)

Abstract
We prove that for any computably enumerable degree c, if it is cappable in the computably enumerable degrees, then there is a d.c.e. degree d such that c d = 0′ and c ∩ d = 0. Consequently, a computably enumerable degree is cappable if and only if it can be complemented by a nonzero d.c.e. degree. This gives a new characterization of the cappable degrees
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1016/j.apal.2003.10.002
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 54,466
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

A Minimal Pair of Recursively Enumerable Degrees.C. E. M. Yates - 1966 - Journal of Symbolic Logic 31 (2):159-168.
The D.R.E. Degrees Are Not Dense.S. Cooper, Leo Harrington, Alistair Lachlan, Steffen Lempp & Robert Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
Bounding Minimal Pairs.A. H. Lachlan - 1979 - Journal of Symbolic Logic 44 (4):626-642.
Minimal Degrees and the Jump Operator.S. B. Cooper - 1973 - Journal of Symbolic Logic 38 (2):249-271.

View all 15 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Quasi-Complements of the Cappable Degrees.Guohua Wu - 2004 - Mathematical Logic Quarterly 50 (2):189.
Bounding Cappable Degrees.Angsheng Li - 2000 - Archive for Mathematical Logic 39 (5):311-352.
Infima of D.R.E. Degrees.Jiang Liu, Shenling Wang & Guohua Wu - 2010 - Archive for Mathematical Logic 49 (1):35-49.
On a Conjecture of Lempp.Angsheng Li - 2000 - Archive for Mathematical Logic 39 (4):281-309.
Nonhemimaximal Degrees and the High/Low Hierarchy.Fang Chengling & Wu Guohua - 2012 - Journal of Symbolic Logic 77 (2):433-446.
Bounding Computably Enumerable Degrees in the Ershov Hierarchy.Angsheng Li, Guohua Wu & Yue Yang - 2006 - Annals of Pure and Applied Logic 141 (1):79-88.
The Computably Enumerable Degrees Are Locally Non-Cappable.Matthew B. Giorgi - 2003 - Archive for Mathematical Logic 43 (1):121-139.

Analytics

Added to PP index
2014-01-16

Total views
8 ( #928,663 of 2,374,877 )

Recent downloads (6 months)
1 ( #559,821 of 2,374,877 )

How can I increase my downloads?

Downloads

My notes