Journal of Philosophical Logic 49 (6):1111-1157 (2020)
Abstract |
I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering what useful mathematical work is done by weak counterexamples; whether they are rigorous mathematical proofs or just plausibility arguments; the role of Brouwer’s notion of the creative subject in them, and whether the creative subject is really necessary for them; what axioms for the creative subject are needed; what relation there is between these arguments and Brouwer’s theory of choice sequences. I refute one of Brouwer’s claims with a weak counterexample of my own. I also examine Brouwer’s 1927 proof of the negative continuity theorem, which appears to be a weak counterexample reliant on both the creative subject and the concept of choice sequence; I argue that it provides a good justification for the weak continuity principle, but it is not a weak counterexample and it does not depend essentially on the creative subject.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
ISBN(s) | |
DOI | 10.1007/s10992-020-09551-y |
Options |
![]() ![]() ![]() |
Download options
References found in this work BETA
Informal Rigour and Completeness Proofs.Georg Kreisel - 1967 - In Imre Lakatos (ed.), Problems in the Philosophy of Mathematics. North-Holland. pp. 138--157.
Elements of Intuitionism.Michael Dummett - 1980 - British Journal for the Philosophy of Science 31 (3):299-301.
View all 20 references / Add more references
Citations of this work BETA
No citations found.
Similar books and articles
Brouwer’s Weak Counterexamples and Testability: Further Remarks: Brouwer’s Weak Counterexamples and Testability: Further Remarks.Charles Mccarty - 2013 - Review of Symbolic Logic 6 (3):513-523.
Antirealism and Constructivism: Brouwer’s Weak Counterexamples: Antirealism and Constructivism: Brouwer’s Weak Counterexamples.Charles Mccarty - 2013 - Review of Symbolic Logic 6 (1):147-159.
On Brouwer's Definition of Unextendable Order.Carl J. Posy - 1980 - History and Philosophy of Logic 1 (1-2):139-149.
Enrico Martino.*Intuitionistic Proof Versus Classical Truth, The Role of Brouwer’s Creative Subject in Intuitionistic Mathematics.Wim Veldman - 2019 - Philosophia Mathematica 27 (3):445-450.
Weak König's Lemma Implies Brouwer's Fan Theorem: A Direct Proof.Hajime Ishihara - 2006 - Notre Dame Journal of Formal Logic 47 (2):249-252.
Generalizations of the Weak Law of the Excluded Middle.Andrea Sorbi & Sebastiaan A. Terwijn - 2015 - Notre Dame Journal of Formal Logic 56 (2):321-331.
Book Review: Mark van Atten. On Brouwer. [REVIEW]O. Bradley Bassler - 2006 - Notre Dame Journal of Formal Logic 47 (4):581-599.
Intuitionistic Proof Versus Classical Truth: The Role of Brouwer’s Creative Subject in Intuitionistic Mathematics.Enrico Martino - 2018 - Cham, Switzerland: Springer Verlag.
The Weak Koenig Lemma, Brouwer's Fan Theorem, De Morgan's Law, and Dependent Choice.Josef Berger, Hajime Ishihara & Peter Schuster - 2012 - Reports on Mathematical Logic:63-86.
Enrico Martino, Intuitionistic Proof Versus Classical Truth: The Role of Brouwer’s Creative Subject in Intuitionistic Mathematics, Springer, 2018: Logic, Epistemology, and the Unity of Science, Vol. 42, Pp. 170 + XIII. ISBN 978-3-319-74356-1 EUR 93,59, 978-3-030-08971-9 EUR 93,59,ISBN 978-3-319-74357-8 EUR 74,96.Peter Fletcher - 2019 - Studia Logica 107 (4):845-851.
An Interpretation of Brouwer’s Argument for Bar Induction Via Infinitary Proof Theory.Ryota Akiyoshi - 2018 - Proceedings of the XXIII World Congress of Philosophy 56:5-9.
Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt.Mark van Atten, Dirk van Dalen & Richard Tieszen - 2002 - Philosophia Mathematica 10 (2):203-226.
Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt.Mark Atten, Dirk Dalen & Richard Tieszen - 2002 - Philosophia Mathematica 10 (2):203-226.
Analytics
Added to PP index
2020-05-10
Total views
16 ( #662,576 of 2,498,795 )
Recent downloads (6 months)
1 ( #421,542 of 2,498,795 )
2020-05-10
Total views
16 ( #662,576 of 2,498,795 )
Recent downloads (6 months)
1 ( #421,542 of 2,498,795 )
How can I increase my downloads?
Downloads