The topological product of s4 and S

Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊗ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. In this paper, we axiomatize the topological product of S4 and S5, which is strictly between S4 ⊗ S5 and S4 × S5. We also apply our techniques to (1) proving a conjecture of van Benthem et al concerning the logic of products of Alexandrov spaces with arbitrary topological spaces; and (2) solving a problem in quantified modal logic: in particular, it is known that standard quantified S4 without identity, QS4, is complete in Kripke semantics with expanding domains; we show that QS4 is complete not only in topological semantics with constant domains (which was already shown by Rasiowa and Sikorski), but wrt the topological space Q with a constant countable domain.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 27,208
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

22 ( #226,207 of 2,164,293 )

Recent downloads (6 months)

1 ( #348,039 of 2,164,293 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums