Tomek Bartoszynski. On the structure of measurable filters on a countable set. Real analysis exchange, vol. 17 no. 2 , pp. 681–701. - Tomek Bartoszynski and Saharon Shelah. Intersection of < 2ℵ0 ultrafilters may have measure zero. Archive for mathematical logic, vol. 31 , pp. 221–226. - Tomek Bartoszynski and Haim Judah. Measure and Category—filters on ω. Set theory of the continuum, edited by H. Judah, W. Just, and H. Woodin, Mathematical Sciences Research Institute publications, vol. 26, Springer-Verlag, New York, Berlin, Heidelberg, etc., 1992, pp. 175–201. - Tomek Bartoszynski, Martin Goldstern, Haim Judah, and Saharon Shelah. All meager filters may be null. Proceedings of the American Mathematical Society, vol. 117 , pp. 515–521. - Tomek Bartoszyński. Remarks on the intersection of filters. Topology and its applications, vol. 84 , pp. 139–143 [Book Review]

Bulletin of Symbolic Logic 7 (3):388-389 (2001)

Abstract This article has no associated abstract. (fix it)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2687761
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 45,662
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

[Omnibus Review].Martin Goldstern - 1997 - Journal of Symbolic Logic 62 (2):680-683.
Omnibus Review. [REVIEW]Martin Goldstern - 1997 - Journal of Symbolic Logic 62 (2):680-683.
Intersection of Ultrafilters May Have Measure Zero.Tomek Bartoszynski & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (4):221-226.
Strongly Meager and Strong Measure Zero Sets.Tomek Bartoszyński & Saharon Shelah - 2002 - Archive for Mathematical Logic 41 (3):245-250.
The Cichoń Diagram.Tomek Bartoszyński, Haim Judah & Saharon Shelah - 1993 - Journal of Symbolic Logic 58 (2):401 - 423.
Strongly Meager Sets Do Not Form an Ideal.Tomek Bartoszynski & Saharon Shelah - 2001 - Journal of Mathematical Logic 1 (1):1-34.
Jumping with Random Reals.Tomek Bartoszynski & Haim Judah - 1990 - Annals of Pure and Applied Logic 48 (3):197-213.
Mathematical Logic.Tomek Bartoszynski & Saharon Shelah - 2003 - Archive for Mathematical Logic 42:769-779.
Strongly Meager Sets of Size Continuum.Tomek Bartoszynski & Saharon Shelah - 2003 - Archive for Mathematical Logic 42 (8):769-779.
Closed Measure Zero Sets.Tomek Bartoszynski & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (2):93-110.
Adding One Random Real.Tomek Bartoszyński, Andrzej Rosłanowski & Saharon Shelah - 1996 - Journal of Symbolic Logic 61 (1):80-90.

Analytics

Added to PP index
2014-03-25

Total views
40 ( #221,487 of 2,280,717 )

Recent downloads (6 months)
6 ( #192,565 of 2,280,717 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature