Quantum gravity: Meaning and measurement

Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 46 (2):209-216 (2014)
  Copy   BIBTEX

Abstract

A discussion of the meaning of a physical concept cannot be separated from discussion of the conditions for its ideal measurement. We assert that quantization is no more than the invocation of the quantum of action in the explanation of some process or phenomenon, and does not imply an assertion of the fundamental nature of such a process. This leads to an ecumenical approach to the problem of quantization of the gravitational field. There can be many valid approaches, each of which should be judged by the domain of its applicability to various phenomena. If two approaches have overlapping domains, the relation between them then itself becomes a subject of study. We advocate an approach to general relativity based on the unimodular group, which emphasizes the physical significance and measurability of the conformal and projective structures. A discussion of the method of matched asymptotic expansions, and of the weakness of terrestrial sources compared with astrophysical and cosmological sources, leads us to suggest theoretical studies of gravitational radiation based on retrodiction rather than prediction

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,296

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The quantum vacuum and the cosmological constant problem.Svend E. Rugh & Henrik Zinkernagel - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):663-705.
The quantum vacuum and the cosmological constant problem.Svend E. Rugh & Henrik Zinkernagel - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):663-705.
Prerequisites for a consistent framework of quantum gravity.Y. T. - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (2):181-204.
The quantum vacuum and the cosmological constant problem.E. S. & H. Zinkernagel - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):663-705.
A Dilemma For The Emergence Of Spacetime In Canonical Quantum Gravity.Vincent Lam & Michael Esfeld - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):286-293.
Quantum Gravity.Claus Kiefer - 2004 - Oxford University Press UK.

Analytics

Added to PP
2014-01-27

Downloads
6 (#1,485,580)

6 months
43 (#97,437)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

John Stachel
Boston University

References found in this work

Falsification and the Methodology of Scientific Research Programmes.Imre Lakatos - 1970 - In Imre Lakatos & Alan Musgrave (eds.), Criticism and the growth of knowledge. Cambridge [Eng.]: Cambridge University Press. pp. 91-196.
The Physical Principles of the Quantum Theory: Transl. Into Engl. By Carl Eckart and Frank C. Hoyt.Werner Heisenberg - 1930 - Chicago: Ill., The University of Chicago Press. Edited by Carl Eckart & Frank Clark Hoyt.
La formation de l'esprit scientifique.Gaston Bachelard - 1939 - Philosophical Review 48:443.

View all 12 references / Add more references