Lowness and $\Pi _{2}^{0}$ Nullsets

Journal of Symbolic Logic 71 (3):1044 - 1052 (2006)
Abstract
We prove that there exists a noncomputable c.e. real which is low for weak 2-randomness, a definition of randomness due to Kurtz, and that all reals which are low for weak 2-randomness are low for Martin-Löf randomness.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Rodney G. Downey & Evan J. Griffiths (2004). Schnorr Randomness. Journal of Symbolic Logic 69 (2):533 - 554.
George Barmpalias (2010). Relative Randomness and Cardinality. Notre Dame Journal of Formal Logic 51 (2):195-205.
Roman Frigg (2006). The Ergodic Hierarchy, Randomness and Hamiltonian Chaos. Studies in History and Philosophy of Science Part B 37 (4):661-691.
Joseph Berkovitz, Roman Frigg & Fred Kronz (2006). The Ergodic Hierarchy, Randomness and Hamiltonian Chaos. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):661-691.
Antony Eagle, Chance Versus Randomness. Stanford Encyclopedia of Philosophy.
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2011-05-29

Total downloads

1 ( #445,363 of 1,102,731 )

Recent downloads (6 months)

1 ( #296,833 of 1,102,731 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.