Almost weakly 2-generic sets

Journal of Symbolic Logic 59 (3):868-887 (1994)
Abstract
There is a family of questions in relativized complexity theory--weak analogs of the Friedberg Jump-Inversion Theorem--that are resolved by 1-generic sets but which cannot be resolved by essentially any weaker notion of genericity. This paper defines aw2-generic sets. i.e., sets which meet every dense set of strings that is r.e. in some incomplete r.e. set. Aw2-generic sets are very close to 1-generic sets in strength, but are too weak to resolve these questions. In particular, it is shown that for any set X there is an aw2-generic set G such that $\mathbf{NP}^G \cap co-\mathbf{NP}^G \nsubseteq \mathbf{P}^{G \oplus X}$ . (On the other hand, if G is 1-generic, then $\mathbf{NP}^G \cap co-\mathbf{NP}^G \subseteq \mathbf{P}^{G \oplus \mathrm{SAT}}$ . where SAT is the NP-complete satisfiability problem [6].) This result runs counter to the fact that most finite extension constructions in complexity theory can be made effective. These results imply that any finite extension construction that ensures any of the Friedberg analogs must be noneffective, even relative to an arbitrary incomplete r.e. set. It is then shown that the recursion theoretic properties of aw2-generic sets differ radically from those of 1-generic sets: every degree above O' contains an aw2-generic set: no aw2-generic set exists below any incomplete r.e. set; there is an aw2-generic set which is the join of two Turing equivalent aw2-generic sets. Finally, a result of Shore is presented [30] which states that every degree above 0' is the jump of an aw2-generic degree
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,412
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

1 ( #446,747 of 1,103,045 )

Recent downloads (6 months)

1 ( #297,567 of 1,103,045 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.