On ockham algebras: Congruence lattices and subdirectly irreducible algebras

Studia Logica 55 (2):319 - 346 (1995)
Distributive bounded lattices with a dual homomorphism as unary operation, called Ockham algebras, were firstly studied by Berman (1977). The varieties of Boolean algebras, De Morgan algebras, Kleene algebras and Stone algebras are some of the well known subvarieties of Ockham algebra. In this paper, new results about the congruence lattice of Ockham algebras are given. From these results and Urquhart's representation theorem for Ockham algebras a complete characterization of the subdirectly irreducible Ockham algebras is obtained. These results are particularized for a large number of subvarieties of Ockham algebras. For these subvarieties a full description of their subdirectly irreducible algebras is given as well.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    20 ( #71,702 of 1,089,047 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.