$$\mathcal {F}$$ F -finite embeddabilities of sets and ultrafilters

Archive for Mathematical Logic 55 (5-6):705-734 (2016)
  Copy   BIBTEX

Abstract

Let S be a semigroup, let n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document} be a positive natural number, let A,B⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B\subseteq S$$\end{document}, let U,V∈βS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U},\mathcal {V}\in \beta S$$\end{document} and let let F⊆{f:Sn→S}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}\subseteq \{f:S^{n}\rightarrow S\}$$\end{document}. We say that A is F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-finitely embeddable in B if for every finite set F⊆A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\subseteq A$$\end{document} there is a function f∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {F}$$\end{document} such that fAn⊆B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left \subseteq B$$\end{document}, and we say that U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} is F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-finitely embeddable in V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document} if for every set B∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in \mathcal {V}$$\end{document} there is a set A∈U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \mathcal {U}$$\end{document} such that A is F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-finitely embeddable in B. We show that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-finite embeddabilities can be used to study certain combinatorial properties of sets and ultrafilters related with finite structures. We introduce the notions of set and of ultrafilter maximal for F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-finite embeddability, whose existence is proved under very mild assumptions. Different choices of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} can be used to characterize many combinatorially interesting sets/ultrafilters as maximal sets/ultrafilters, for example thick sets, AP-rich sets, K¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}$$\end{document} and so on. The set of maximal ultrafilters for F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-finite embeddability can be characterized algebraically in terms of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}. This property can be used to give an algebraic characterization of certain interesting sets of ultrafilters, such as the ultrafilters whose elements contain, respectively, arbitrarily long arithmetic, geoarithmetic or polynomial progressions. As a consequence of the connection between sets and ultrafilters maximal for F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-finite embeddability we are able to prove a general result that entails, for example, that given a finite partition of a set that contains arbitrarily long geoarithmetic progressions, one cell must contain arbitrarily long geoarithmetic progressions. Finally we apply F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-finite embeddabilities to study a few properties of homogeneous partition regular diophantine equations. Some of our results are based on connections between ultrafilters and nonstandard models of arithmetic.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,752

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Partitions of large Rado graphs.M. Džamonja, J. A. Larson & W. J. Mitchell - 2009 - Archive for Mathematical Logic 48 (6):579-606.
Covering properties of ideals.Marek Balcerzak, Barnabás Farkas & Szymon Gła̧b - 2013 - Archive for Mathematical Logic 52 (3-4):279-294.
Thin Ultrafilters.O. Petrenko & I. V. Protasov - 2012 - Notre Dame Journal of Formal Logic 53 (1):79-88.
Inscribing nonmeasurable sets.Szymon Żeberski - 2011 - Archive for Mathematical Logic 50 (3-4):423-430.
Degrees of difficulty of generalized r.e. separating classes.Douglas Cenzer & Peter G. Hinman - 2008 - Archive for Mathematical Logic 46 (7-8):629-647.
The ordertype of β-r.E. Sets.Klaus Sutner - 1990 - Journal of Symbolic Logic 55 (2):573-576.
The intersection of a curve with algebraic subgroups in a product of elliptic curves.Evelina Viada - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (1):47-75.
A Note on Weakly Dedekind Finite Sets.Pimpen Vejjajiva & Supakun Panasawatwong - 2014 - Notre Dame Journal of Formal Logic 55 (3):413-417.
Ultrafilters on ω.James E. Baumgartner - 1995 - Journal of Symbolic Logic 60 (2):624-639.
Recursive Inseparability for Residual Bounds of Finite Algebras.Ralph Mckenzie - 2000 - Journal of Symbolic Logic 65 (4):1863-1880.
Ultrafilters on $omega$.James E. Baumgartner - 1995 - Journal of Symbolic Logic 60 (2):624-639.

Analytics

Added to PP
2017-11-06

Downloads
5 (#1,536,375)

6 months
4 (#778,909)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

More about divisibility in βN.Boris Šobot - 2021 - Mathematical Logic Quarterly 67 (1):77-87.
Multiplicative finite embeddability vs divisibility of ultrafilters.Boris Šobot - 2022 - Archive for Mathematical Logic 61 (3):535-553.

Add more citations

References found in this work

Model Theory.Michael Makkai, C. C. Chang & H. J. Keisler - 1991 - Journal of Symbolic Logic 56 (3):1096.
Applied Nonstandard Analysis.Martin Davis - 1978 - Journal of Symbolic Logic 43 (2):383-384.

Add more references