Journal of Philosophical Logic 34 (4):363-401 (2005)

This paper uses a non-distributive system of Boolean fractions (a|b), where a and b are 2-valued propositions or events, to express uncertain conditional propositions and conditional events. These Boolean fractions, 'a if b' or 'a given b', ordered pairs of events, which did not exist for the founders of quantum logic, can better represent uncertain conditional information just as integer fractions can better represent partial distances on a number line. Since the indeterminacy of some pairs of quantum events is due to the mutual inconsistency of their experimental conditions, this algebra of conditionals can express indeterminacy. In fact, this system is able to express the crucial quantum concepts of orthogonality, simultaneous verifiability, compatibility, and the superposition of quantum events, all without resorting to Hilbert space. A conditional (a|b) is said to be "inapplicable" (or "undefined") in those instances or models for which b is false. Otherwise the conditional takes the truth-value of proposition a. Thus the system is technically 3-valued, but the 3rd value has nothing to do with a state of ignorance, nor to some half-truth. People already routinely put statements into three categories: true, false, or inapplicable. As such, this system applies to macroscopic as well as microscopic events. Two conditional propositions turn out to be simultaneously verifiable just in case the truth of one implies the applicability of the other. Furthermore, two conditional propositions (a|b) and (c|d) reside in a common Boolean sub-algebra of the non-distributive system of conditional propositions just in case b = d, their conditions are equivalent. Since all aspects of quantum mechanics can be represented with this near classical logic, there is no need to adopt Hilbert space logic as ordinary logic, just a need perhaps to adopt propositional fractions to do logic, just as we long ago adopted integer fractions to do arithmetic. The algebra of Boolean fractions is a natural, near-Boolean extension of Boolean algebra adequate to express quantum logic. While this paper explains one group of quantum anomalies, it nevertheless leaves no less mysterious the 'influence-at-a-distance', quantum entanglement phenomena. A quantum realist must still embrace non-local influences to hold that "hidden variables" are the measured properties of particles. But that seems easier than imaging wave-particle duality and instant collapse, as offered by proponents of the standard interpretation of quantum mechanics
Keywords compatible propositions  conditional events  conditional logic  conditional probability  orthoalgebra  orthogonal  simultaneously measurable  simultaneously observable  simultaneously verifiable  superposition
Categories (categorize this paper)
DOI 10.1007/s10992-005-2829-4
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 56,949
Through your library

References found in this work BETA

The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.

View all 29 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

On Quantum Logic.T. A. Brody - 1984 - Foundations of Physics 14 (5):409-430.
Primacy of Quantum Logic in the Natural World.Cynthia Sue Larson - 2015 - Cosmos and History 11 (2):326-340.
Quantum Logic as a Fragment of Independence-Friendly Logic.Jaakko Hintikka - 2002 - Journal of Philosophical Logic 31 (3):197-209.
Only If 'Acrobatic Logic' is Non-Boolean.Slawomir Bugajski - 1980 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:264 - 271.
Boolean Semantics for Natural Language.Lawrence S. Moss - 1987 - Journal of Symbolic Logic 52 (2):554-555.
Boolean Deductive Systems of BL-Algebras.Esko Turunen - 2001 - Archive for Mathematical Logic 40 (6):467-473.
Boolean-Valued Second-Order Logic.Daisuke Ikegami & Jouko Väänänen - 2015 - Notre Dame Journal of Formal Logic 56 (1):167-190.
Are the Laws of Quantum Logic Laws of Nature?Peter Mittelstaedt - 2012 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 43 (2):215-222.
Semantic Alternatives in Partial Boolean Quantum Logic.R. I. G. Hughes - 1985 - Journal of Philosophical Logic 14 (4):411 - 446.


Added to PP index

Total views
64 ( #155,599 of 2,409,938 )

Recent downloads (6 months)
2 ( #348,054 of 2,409,938 )

How can I increase my downloads?


My notes