On the Origins of Symmetry and Modularity in the Proteasome Family

Bioessays 41 (5):1800237 (2019)
  Copy   BIBTEX

Abstract

The proteasome family of proteases comprises oligomeric assemblies of very different symmetry. In different sizes, it features ring‐like oligomers with dihedral symmetry that allow the stacking of further rings of regulatory subunits as observed in the modular proteasome system, but also less symmetric helical assemblies. Comprehensive sequence and structural analyses of proteasome homologs reveal a parsimonious scenario of how symmetry may have emerged from a monomeric ancestral precursor and how it may have evolved throughout the proteasome family. The four characterized representatives—ancestral β subunit (Anbu), HslV, betaproteobacterial proteasome homolog (BPH), and the 20S proteasome—are outlasting cornerstones in the family's evolutionary history, each marking a transition in symmetry. This article contextualizes the evolutionary and functional key aspects of these symmetry transitions, explaining how they facilitated the diversification and concurrent evolution of independent proteolytic systems side by side, each with its customized network of auxiliary interactors.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,774

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2019-04-12

Downloads
23 (#160,613)

6 months
8 (#1,326,708)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references