Information, Physics and the Representing Mind

Cosmos and History 10 (1):131-139 (2014)
  Copy   BIBTEX

Abstract

A primary function of mind is to form and manipulate representations to identify and choose survival-enhancing behaviors. Representations are themselves physical systems that can be manipulated to reason about, predict, or plan actions involving the objects they designate. The field of knowledge representation and reasoning turns representation upon itself to study how representations are formed and used by biological and computer systems. Some of the most versatile and successful KRR methods have been imported from computational physics. Features of a problem are mapped onto dimensions of an imaginary physical system in which solution quality is inversely related to energy. Simulating the fictitious physical system on a digital computer yields a low-energy, and hence high-quality, solution to the original problem. This paper suggests a rethinking of the traditional metaphor of cognition as execution of algorithms on a digital computer. It may be both more fruitful and more accurate to conceive of representation as mapping problem features to an energy surface, learning as identifying representations that map good solutions to low free energy, and problem solving as efficient search for low free energy states. This conception of cognition is in natural accord with Stapp's theory of efficacious conscious choice. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,031

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2014-06-08

Downloads
12 (#1,114,191)

6 months
1 (#1,516,001)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations