Subsystems of Second Order Arithmetic

Springer Verlag (1999)
  Copy   BIBTEX

Abstract

Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 89,408

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Formalizing forcing arguments in subsystems of second-order arithmetic.Jeremy Avigad - 1996 - Annals of Pure and Applied Logic 82 (2):165-191.
Stephen G. Simpson subsystems of second-order arithmetic.Jeffrey Ketland - 2001 - British Journal for the Philosophy of Science 52 (1):191-195.
Fundamental notions of analysis in subsystems of second-order arithmetic.Jeremy Avigad - 2006 - Annals of Pure and Applied Logic 139 (1):138-184.
A note on Goodman's theorem.Ulrich Kohlenbach - 1999 - Studia Logica 63 (1):1-5.
Interpreting classical theories in constructive ones.Jeremy Avigad - 2000 - Journal of Symbolic Logic 65 (4):1785-1812.
Nonstandard arithmetic and reverse mathematics.H. Jerome Keisler - 2006 - Bulletin of Symbolic Logic 12 (1):100-125.
Quantum Mathematics.J. Michael Dunn - 1980 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:512 - 531.
Regularity in models of arithmetic.George Mills & Jeff Paris - 1984 - Journal of Symbolic Logic 49 (1):272-280.

Analytics

Added to PP
2011-03-20

Downloads
30 (#452,445)

6 months
2 (#640,495)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
Bounded functional interpretation.Fernando Ferreira & Paulo Oliva - 2005 - Annals of Pure and Applied Logic 135 (1):73-112.
Predicativity.Solomon Feferman - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press. pp. 590-624.

View all 126 citations / Add more citations

References found in this work

No references found.

Add more references