Actin filaments and photoreceptor membrane turnover

Bioessays 13 (4):171-178 (1991)
  Copy   BIBTEX

Abstract

The shape and turnover of photoreceptor membranes appears to depend on associated actin filaments. In dipterans, the photoreceptor membrane is microvillar. It is turned over by the addition of new membrane at the bases of the microvilli and by subsequent shedding, mostly from the distal ends. Each microvillus contains actin filaments as a component of its cytoskeletal core. Two myosin I‐like proteins co‐localize with the actin filaments. It is suggested that one of the myosin I‐like proteins might be linked to the microvillar membrane. By interacting with the actin filaments, this motor should move the membrane of a microvillus in a distal direction, thus providing a possible mechanism for the turnover of the membrane.A vertebrate photoreceptor cell contains a small cluster of actin filaments in its connecting cilium at the site where new transductive disk membranes are formed. Disruption of the actin filaments perturbs disk morphogenesis. The most likely explanation for this perturbation is that the process of initiating a new disk is inhibited. Conventional myosin (myosin II) is found in the connecting cilium with the same distribution as actin. A simple model is proposed to illustrate how the actin–myosin system of the connecting cilium might function to initiate the morphogenesis of a disk membrane.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,031

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-23

Downloads
16 (#934,417)

6 months
3 (#1,046,495)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Add more references