Switch to: References

Citations of:

Methylation and the X chromosome

Bioessays 4 (5):204-208 (1986)

Add citations

You must login to add citations.
  1. Eukaryotic DNA methyltransferases – structure and function.Roger L. P. Adams - 1995 - Bioessays 17 (2):139-145.
    Methylation of DNA plays an important role in the control of gene expression in higher eukaryotes. This is largely achieved by the packaging of methylated DNA into chromatin structures that are inaccessible to transcription factors and other proteins. Methylation involves the addition of a methyl group to the 5‐position of the cytosine base in DNA, a reaction catalysed by a DNA (cytosine‐5) methyltransferase. This reaction occurs in nuclear replication foci where the chromatin structure is loosened for replication, thereby allowing access (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • X chromosome inactivation: A hypothesis.Michael W. McBurney - 1988 - Bioessays 9 (2-3):85-88.
    X‐chromosome inactivation refers to the coordinate regulation of almost all genes on the mammalian × chromosome. Most models for × chromosome inactivation suppose a role for methylation of × chromosome DNA sequences and/or the heterochromatinization of large «domains» of the × chromosome containing many genes.1 Some recent work concerning the expression of X‐linked transgenes, and parallels between regulated expression of sex‐linked genes in invertebrates and mammals, suggest that × chromosome inactivation may be a gene‐by‐gene event mediated by the interaction between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Genes and genomes: Sequencing 5‐methylcytosine residues in genomic DNA.Geoffrey Grigg & Susan Clark - 1994 - Bioessays 16 (6):431-436.
    To analyse the biological role of 5‐methylation of cytosine residues in DNA requires precise and efficient methods for detecting individual 5‐methylcytosines (5‐MeCs) in genomic DNA. The methods developed over the past decade rely on either differential enzymatic or chemical cleavage of DNA, or more recently on differential sensitivity to chemical conversion of one base to another. The most commonly used methods for studying the methylation profile of DNA, including the bisulphite base‐conversion method, are reviewed.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark