From closed to open systems

In J. Czermak (ed.), Philosophy of Mathematics, pp. 206-220. Hölder-Pichler-Tempsky (1993)
Abstract
While Gödel's (first) incompleteness theorem has been used to refute the main contentions of Hilbert's program, it does not seem to have been generally used to stress that a basic ingredient of that program, the concept of formal system as a closed system - as well as the underlying view, embodied in the axiomatic method, that mathematical theories are deductions from first principles must be abandoned. Indeed the logical community has generally failed to learn Gödel's lesson that Hilbert's concept of formal system as a closed system is inadequate and continues to use it as if there were no incompleteness theorem. In this paper I will stress the role of Gödel's incompleteness theorem in showing the inadequacy of such a concept of formal system and the need for a more articulated view of mathematical theories. More generally I will argue that Gödel's result entails that, as an alternative to mathematical logic, a new concept of logic is required: logic as the theory of communicating inference processes.
Keywords Closed Systems  Open Systems  Incompleteness Theorems
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    29 ( #50,818 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.