Boolean Algebras, Stone Spaces, and the Iterated Turing Jump

Journal of Symbolic Logic 59 (4):1121 - 1138 (1994)
We show, roughly speaking, that it requires ω iterations of the Turing jump to decode nontrivial information from Boolean algebras in an isomorphism invariant fashion. More precisely, if α is a recursive ordinal, A is a countable structure with finite signature, and d is a degree, we say that A has αth-jump degree d if d is the least degree which is the αth jump of some degree c such there is an isomorphic copy of A with universe ω in which the functions and relations have degree at most c. We show that every degree d ≥ 0 (ω) is the ωth jump degree of a Boolean algebra, but that for $n no Boolean algebra has nth-jump degree $\mathbf{d} > 0^{(n)}$ . The former result follows easily from work of L. Feiner. The proof of the latter result uses the forcing methods of J. Knight together with an analysis of various equivalences between Boolean algebras based on a study of their Stone spaces. A byproduct of the proof is a method for constructing Stone spaces with various prescribed properties
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads


    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.