A proof-theoretic study of the correspondence of classical logic and modal logic

Journal of Symbolic Logic 68 (4):1403-1414 (2003)
Abstract
It is well known that the modal logic S5 can be embedded in the classical predicate logic by interpreting the modal operator in terms of a quantifier. Wajsberg [10] proved this fact in a syntactic way. Mints [7] extended this result to the quantified version of S5; using a purely proof-theoretic method he showed that the quantified S5 corresponds to the classical predicate logic with one-sorted variable. In this paper we extend Mints' result to the basic modal logic S4; we investigate the correspondence between the quantified versions of S4 (with and without the Barcan formula) and the classical predicate logic (with one-sorted variable). We present a purely proof-theoretic proof-transformation method, reducing an LK-proof of an interpreted formula to a modal proof
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,826
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Sara Negri (2011). Proof Theory for Modal Logic. Philosophy Compass 6 (8):523-538.
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

12 ( #133,580 of 1,100,123 )

Recent downloads (6 months)

5 ( #66,996 of 1,100,123 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.