Two-cardinal diamond and games of uncountable length

Archive for Mathematical Logic 54 (3-4):395-412 (2015)
  Copy   BIBTEX

Abstract

Let μ,κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu, \kappa}$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} be three uncountable cardinals such that μ=cf<κ=cf<λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu = {\rm cf} < \kappa = {\rm cf} < \lambda.}$$\end{document} The game ideal NGκ,λμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NG_{\kappa,\lambda}^\mu}$$\end{document} is a normal ideal on Pκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P_\kappa }$$\end{document} defined using games of length μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}. We show that if 2≤λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^{} \leq \lambda}$$\end{document} and there are no large cardinals in an inner model, then the diamond principle ♢κ,λ[NGκ,λμ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_{\kappa,\lambda} [{NG}_{\kappa,\lambda}^\mu]}$$\end{document} holds. We also show that if ♢κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_\kappa }$$\end{document} holds, where S is a stationary subset of κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, then ♢κ,λ:a∩κ∈S})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_{\kappa,\lambda} : a \cap \kappa \in S\})}$$\end{document} holds.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,813

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The Magidor function and diamond.Pierre Matet - 2011 - Journal of Symbolic Logic 76 (2):405 - 417.
Diamond, square, and level by level equivalence.Arthur W. Apter - 2005 - Archive for Mathematical Logic 44 (3):387-395.
Splitting number at uncountable cardinals.Jindřich Zapletal - 1997 - Journal of Symbolic Logic 62 (1):35-42.
An L-like model containing very large cardinals.Arthur W. Apter & James Cummings - 2008 - Archive for Mathematical Logic 47 (1):65-78.
Splitting stationary sets in.Toshimichi Usuba - 2012 - Journal of Symbolic Logic 77 (1):49-62.
Club guessing sequences and filters.Tetsuya Ishiu - 2005 - Journal of Symbolic Logic 70 (4):1037-1071.
Power-like models of set theory.Ali Enayat - 2001 - Journal of Symbolic Logic 66 (4):1766-1782.
Cardinal sequences.István Juhász & William Weiss - 2006 - Annals of Pure and Applied Logic 144 (1-3):96-106.
Winning strategies in club games and their applications.Bernhard König - 2011 - Mathematical Logic Quarterly 57 (1):19-26.

Analytics

Added to PP
2015-03-22

Downloads
20 (#788,228)

6 months
4 (#853,525)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Guessing more sets.Pierre Matet - 2015 - Annals of Pure and Applied Logic 166 (10):953-990.

Add more citations

References found in this work

Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327-359.
The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
On the size of closed unbounded sets.James E. Baumgartner - 1991 - Annals of Pure and Applied Logic 54 (3):195-227.
Higher Souslin trees and the generalized continuum hypothesis.John Gregory - 1976 - Journal of Symbolic Logic 41 (3):663-671.

View all 11 references / Add more references