Categoricity theorems and conceptions of set

Journal of Philosophical Logic 31 (2):181-196 (2002)
Abstract
Two models of second-order ZFC need not be isomorphic to each other, but at least one is isomorphic to an initial segment of the other. The situation is subtler for impure set theory, but Vann McGee has recently proved a categoricity result for second-order ZFCU plus the axiom that the urelements form a set. Two models of this theory with the same universe of discourse need not be isomorphic to each other, but the pure sets of one are isomorphic to the pure sets of the other. This paper argues that similar results obtain for considerably weaker second-order axiomatizations of impure set theory that are in line with two different conceptions of set, the iterative conception and the limitation of size doctrine
Keywords categoricity  second-order set theory  iterative conception  limitation of size
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,802
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

31 ( #59,283 of 1,099,764 )

Recent downloads (6 months)

4 ( #90,092 of 1,099,764 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.